ONNX Runtime中OpenVINO与DirectML执行提供器的兼容性问题解析
2025-05-13 09:46:05作者:宣利权Counsellor
问题背景
在ONNX Runtime深度学习推理框架中,执行提供器(Execution Provider, EP)是支持不同硬件加速后端的关键组件。近期有开发者在Windows平台上构建了集成OpenVINO和DirectML(DML)两种执行提供器的ONNX Runtime 1.19.0版本,虽然构建过程顺利完成,但在实际使用中遇到了一个特殊的技术问题。
现象描述
开发者成功构建了包含OpenVINO 2024.3和DirectML的ONNX Runtime版本,并通过Python wheel包进行安装。系统能够正确识别并注册这两个执行提供器,但在尝试同时使用它们时出现了"Execution type OpenVINOExecutionProvider doesn't support memcpy"的错误。
具体表现为:
- 单独使用DirectML执行提供器时工作正常
- OpenVINO执行提供器也能被正确识别
- 但当尝试在同一个推理会话(InferenceSession)中同时指定这两个提供器时,系统抛出内存拷贝(memcpy)不支持的异常
技术分析
经过深入排查,发现问题源于ONNX Runtime执行提供器的协同工作机制。虽然ONNX Runtime文档中说明可以通过优先级列表指定多个执行提供器,让系统自动选择最合适的提供器执行每个节点,但这种机制在OpenVINO和DirectML这两个特定提供器之间存在兼容性问题。
根本原因可能涉及以下几个方面:
- 内存管理差异:OpenVINO和DirectML可能采用了不同的内存分配和管理策略,导致在尝试在两者之间传输数据时出现不兼容
- 执行上下文隔离:这两个提供器可能要求完全独立的执行上下文,不能很好地共享内存资源
- 架构限制:早期版本中可能存在过于严格的检查机制,限制了跨提供器的内存操作
解决方案
开发者最终找到了有效的解决方法:
- 单独使用执行提供器:为OpenVINO和DirectML分别创建独立的推理会话
# OpenVINO专用会话
openvino_options = [{'device_type': 'GPU', 'cache_dir': 'cachedir'}]
openvino_session = onnxruntime.InferenceSession(
"model.onnx",
providers=['OpenVINOExecutionProvider'],
provider_options=openvino_options
)
# DirectML专用会话
dml_session = onnxruntime.InferenceSession(
"model.onnx",
providers=['DmlExecutionProvider']
)
- 避免混合使用:不要在同一个会话中同时指定这两个提供器
最佳实践建议
- 版本选择:考虑使用更新的ONNX Runtime版本,因为后续版本可能已经修复了这个问题
- 性能考量:如果需要切换不同硬件后端,建议预先创建多个会话实例,而不是依赖执行提供器的自动切换
- 错误处理:在代码中添加适当的异常处理,当首选提供器不可用时优雅地回退到备用方案
- 资源管理:注意不同提供器可能对GPU资源有不同的占用方式,避免资源冲突
总结
这个案例展示了深度学习框架中多后端支持可能遇到的底层兼容性问题。虽然ONNX Runtime设计上支持多执行提供器的协同工作,但在实际实现中,特定硬件后端的组合可能需要特殊处理。理解这些底层机制有助于开发者更好地利用框架的强大功能,同时避免潜在的陷阱。
对于需要同时支持多种硬件加速方案的应用程序,建议采用明确的、分离的后端选择策略,而不是依赖框架的自动选择机制,这样可以获得更可靠和可预测的行为。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0360Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++086Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
189
2.14 K

React Native鸿蒙化仓库
C++
205
284

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

Ascend Extension for PyTorch
Python
58
89

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
966
571

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
545
76

openGauss kernel ~ openGauss is an open source relational database management system
C++
146
192

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.01 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
392
23