ONNX Runtime中OpenVINO与DirectML执行提供器的兼容性问题解析
2025-05-13 16:33:51作者:宣利权Counsellor
问题背景
在ONNX Runtime深度学习推理框架中,执行提供器(Execution Provider, EP)是支持不同硬件加速后端的关键组件。近期有开发者在Windows平台上构建了集成OpenVINO和DirectML(DML)两种执行提供器的ONNX Runtime 1.19.0版本,虽然构建过程顺利完成,但在实际使用中遇到了一个特殊的技术问题。
现象描述
开发者成功构建了包含OpenVINO 2024.3和DirectML的ONNX Runtime版本,并通过Python wheel包进行安装。系统能够正确识别并注册这两个执行提供器,但在尝试同时使用它们时出现了"Execution type OpenVINOExecutionProvider doesn't support memcpy"的错误。
具体表现为:
- 单独使用DirectML执行提供器时工作正常
- OpenVINO执行提供器也能被正确识别
- 但当尝试在同一个推理会话(InferenceSession)中同时指定这两个提供器时,系统抛出内存拷贝(memcpy)不支持的异常
技术分析
经过深入排查,发现问题源于ONNX Runtime执行提供器的协同工作机制。虽然ONNX Runtime文档中说明可以通过优先级列表指定多个执行提供器,让系统自动选择最合适的提供器执行每个节点,但这种机制在OpenVINO和DirectML这两个特定提供器之间存在兼容性问题。
根本原因可能涉及以下几个方面:
- 内存管理差异:OpenVINO和DirectML可能采用了不同的内存分配和管理策略,导致在尝试在两者之间传输数据时出现不兼容
- 执行上下文隔离:这两个提供器可能要求完全独立的执行上下文,不能很好地共享内存资源
- 架构限制:早期版本中可能存在过于严格的检查机制,限制了跨提供器的内存操作
解决方案
开发者最终找到了有效的解决方法:
- 单独使用执行提供器:为OpenVINO和DirectML分别创建独立的推理会话
# OpenVINO专用会话
openvino_options = [{'device_type': 'GPU', 'cache_dir': 'cachedir'}]
openvino_session = onnxruntime.InferenceSession(
"model.onnx",
providers=['OpenVINOExecutionProvider'],
provider_options=openvino_options
)
# DirectML专用会话
dml_session = onnxruntime.InferenceSession(
"model.onnx",
providers=['DmlExecutionProvider']
)
- 避免混合使用:不要在同一个会话中同时指定这两个提供器
最佳实践建议
- 版本选择:考虑使用更新的ONNX Runtime版本,因为后续版本可能已经修复了这个问题
- 性能考量:如果需要切换不同硬件后端,建议预先创建多个会话实例,而不是依赖执行提供器的自动切换
- 错误处理:在代码中添加适当的异常处理,当首选提供器不可用时优雅地回退到备用方案
- 资源管理:注意不同提供器可能对GPU资源有不同的占用方式,避免资源冲突
总结
这个案例展示了深度学习框架中多后端支持可能遇到的底层兼容性问题。虽然ONNX Runtime设计上支持多执行提供器的协同工作,但在实际实现中,特定硬件后端的组合可能需要特殊处理。理解这些底层机制有助于开发者更好地利用框架的强大功能,同时避免潜在的陷阱。
对于需要同时支持多种硬件加速方案的应用程序,建议采用明确的、分离的后端选择策略,而不是依赖框架的自动选择机制,这样可以获得更可靠和可预测的行为。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
405
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355