Ragas项目中LLM生成JSON截断问题的分析与解决
2025-05-26 13:56:00作者:董灵辛Dennis
问题背景
在使用Ragas工具评估RAG(检索增强生成)管道时,开发者发现context recall(上下文召回率)和faithfulness(忠实度)两个关键评估指标出现了大量NaN值。经过深入排查,发现问题根源在于底层使用的Palm(bison@002)语言模型生成的JSON输出被意外截断,导致后续解析失败。
技术分析
现象表现
评估过程中,LLM生成的JSON结构不完整,通常在第三或第四条语句处被截断。这种部分生成的JSON无法被正确解析,最终导致评估指标计算失败,返回NaN值。
潜在原因分析
- 输出长度限制:虽然Palm模型的输出序列长度理论上可达1024 tokens,但实际使用时可能受到max_output_tokens参数的显式限制。
- 模型行为特性:LLM在生成结构化输出时可能出现不稳定的情况,特别是在处理特定格式要求时。
- 默认配置不足:Ragas工具中使用的ChatVertexAI模型默认max_output_tokens仅为128 tokens,对于复杂的评估JSON输出可能不足。
解决方案
关键解决步骤
- 调整输出长度参数:显式设置更大的max_output_tokens值(如2048),为模型提供足够的输出空间。
- 输出格式优化:考虑简化评估prompt或调整JSON结构,减少不必要的token消耗。
- 模型选择:对于复杂评估任务,选择输出能力更强的模型版本。
实施效果
通过将text-bison模型的max_output_tokens参数调整为2048后,成功解决了绝大多数NaN值问题,评估指标恢复正常。
最佳实践建议
- 参数调优:在使用LLM进行评估时,始终检查并合理设置max_output_tokens参数。
- 错误处理:在评估流程中加入对模型输出的完整性检查,对异常情况提供友好的错误处理。
- 监控机制:建立评估质量的监控机制,及时发现并处理输出截断等问题。
- 模型适配:根据评估任务的复杂度,选择适当容量的模型和配置参数。
总结
Ragas项目中出现的JSON截断问题揭示了LLM评估中一个常见但容易被忽视的配置问题。通过合理调整模型输出参数,开发者可以显著提高评估的稳定性和可靠性。这一经验也提醒我们,在使用任何基于LLM的评估工具时,都需要充分理解底层模型的配置参数及其对评估结果的影响。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
279
2.58 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
223
303
Ascend Extension for PyTorch
Python
107
138
暂无简介
Dart
571
127
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
601
166
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.04 K
608
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
448
openGauss kernel ~ openGauss is an open source relational database management system
C++
154
205
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
299
39