Oban Pro 高并发场景下的唯一性检查优化实践
2025-06-22 10:04:13作者:卓炯娓
问题背景
在使用Oban Pro进行大规模任务调度时,我们遇到了数据库连接错误的问题。具体表现为在短时间内快速插入大量唯一性任务时,系统频繁出现连接超时错误。经过分析,发现问题的根源在于Oban Pro的唯一性检查机制在高并发场景下的性能瓶颈。
问题现象
在测试环境中,我们尝试为78个父模型创建约5.4万个任务,为117个父模型创建约7.38万个任务时,系统出现了以下典型症状:
- 数据库连接超时错误频繁发生
- 监控显示唯一性检查查询成为长查询
- 数据库表锁持续时间超过30秒
- 移除唯一性检查配置后问题消失
技术分析
唯一性检查机制
Oban Pro提供了强大的唯一性检查功能,可以通过配置确保相同特征的任务不会被重复插入。在我们的案例中,配置如下:
use Oban.Pro.Worker,
unique: [
fields: [:args, :worker],
keys: [:model_id, :model, :scrape_service],
states: [:available, :executing],
period: :infinity
],
max_attempts: 1
这种配置理论上应该能够防止重复任务的插入,但在高并发场景下却成为了性能瓶颈。
问题根源
经过深入排查,发现问题出在Oban Pro的版本迁移上。虽然我们执行了迁移脚本,但实际上系统仍在使用旧版的唯一性检查机制(1.4.0版本),而非最新的增强型唯一性检查(1.5.0版本)。
关键诊断点包括:
- 数据库表中缺少
uniq_key
列 - 生产者表版本显示为1.4.0而非1.5.0
- 唯一性检查键值存储在meta字段而非专用列中
解决方案
正确执行迁移
确保执行正确的迁移脚本是解决问题的第一步。对于Oban Pro 1.5.0,应采用以下迁移方式:
defmodule MyApp.Repo.Migrations.AddObanPro do
use Ecto.Migration
def up, do: Oban.Pro.Migration.up(version: "1.5.0")
def down, do: Oban.Pro.Migration.down()
end
配置优化建议
-
状态配置:建议包含所有相关状态,而不仅仅是部分状态。完整配置应为:
states: [:available, :scheduled, :executing, :retryable]
-
字段配置:除非任务会被调度到多个队列,否则不建议覆盖默认的
fields
配置。 -
数据库分离:对于高并发场景,考虑使用专用数据库来处理Oban任务。
性能对比
新版增强型唯一性检查机制相比旧版有显著性能提升:
- 查询效率提高:专用列索引比meta字段查询更快
- 锁竞争减少:优化后的检查机制减少了表锁时间
- 并发能力增强:能够支持更高频率的任务插入
实施效果
在正确执行迁移并启用新版唯一性检查后:
- 数据库连接错误消失
- 长查询问题得到解决
- 系统能够稳定处理每分钟上万次的任务插入
- 表锁时间降至毫秒级别
经验总结
- 版本验证:升级后务必验证实际运行的版本和迁移状态
- 监控先行:高并发系统应建立完善的数据库监控
- 配置审慎:唯一性检查的配置需要根据实际场景仔细调整
- 渐进实施:大规模系统改造应采用渐进式策略
通过这次问题排查,我们不仅解决了当前的性能瓶颈,也为未来系统的扩展打下了坚实基础。Oban Pro的强大功能在正确配置下能够完美支持高并发任务调度场景。
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++095AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
197
2.17 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
59
94

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
973
574

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
549
81

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133