TensorRT中处理大型ONNX模型的分割文件转换方法
背景介绍
在深度学习模型部署过程中,我们经常需要将ONNX模型转换为TensorRT(TRT)引擎以获得更好的推理性能。然而,当模型大小超过2GB时,ONNX模型会被自动分割成两个文件:一个包含模型结构的.onnx文件和一个包含模型权重的.onnx_data文件。这种分割机制是为了解决某些文件系统的限制问题。
问题描述
许多开发者在使用TensorRT的trtexec工具或Python API转换大型ONNX模型时,会遇到模型被分割为多个文件的情况。标准的转换方法无法直接处理这种分割格式,需要先进行合并或特殊处理。
解决方案
方法一:使用ONNX官方API合并文件
ONNX提供了专门的工具来处理这种外部数据的情况。我们可以使用onnx.external_data_helper模块中的功能将分割的文件重新合并:
import onnx
from onnx.external_data_helper import convert_model_to_external_data
# 加载模型结构
model = onnx.load("model.onnx")
# 将外部数据合并到模型中
convert_model_to_external_data(model, location="model.onnx_data")
# 保存合并后的完整模型
onnx.save(model, "model_fusion.onnx")
合并完成后,就可以使用常规的trtexec工具或TensorRT Python API来转换这个完整的ONNX模型了。
方法二:使用Polygraphy工具处理
Polygraphy是NVIDIA提供的一个实用工具集,可以简化TensorRT的工作流程。我们可以使用它来加载和处理分割的ONNX模型:
import onnx
import onnx_graphsurgeon as gs
# 使用GraphSurgeon加载模型
graph = gs.import_onnx(onnx.load("model.onnx"))
# 导出为ONNX模型
model = gs.export_onnx(graph)
# 合并外部数据
from onnx.external_data_helper import convert_model_to_external_data
convert_model_to_external_data(model, location="model.onnx_data")
# 保存合并后的模型
onnx.save(model, "model_fusion.onnx")
技术细节
-
ONNX模型分割机制:当模型大小超过2GB时,ONNX会自动将权重数据分离到外部文件中,这是为了兼容不支持大文件的文件系统。
-
外部数据引用:在
.onnx文件中,会包含指向.onnx_data文件的引用路径,这些引用在模型加载时会被解析。 -
内存考虑:合并后的模型可能会占用大量内存,建议在具有足够内存的系统上进行此操作。
最佳实践
-
工作目录:确保
.onnx和.onnx_data文件位于同一目录下,否则需要调整路径。 -
版本兼容性:检查ONNX和TensorRT的版本兼容性,不同版本对大型模型的支持可能有所不同。
-
转换参数:对于大型模型,在转换为TRT时可能需要调整最大工作空间大小等参数。
-
验证合并结果:合并后建议使用ONNX运行时验证模型是否能正常加载和推理。
总结
处理大型ONNX模型的分割文件转换到TensorRT引擎是一个常见的部署挑战。通过理解ONNX的外部数据机制和使用适当的工具,我们可以有效地解决这个问题。本文介绍的两种方法都能可靠地将分割的ONNX模型转换为TensorRT可用的格式,开发者可以根据自己的工具链偏好选择适合的方法。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C081
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00