LMMS-Eval项目中LLaVA-OV模型在MMMU基准上的性能差异分析
2025-07-01 03:33:51作者:乔或婵
背景介绍
在开源项目EvolvingLMMs-Lab/lmms-eval的使用过程中,开发者发现了一个值得关注的现象:当使用该评估框架测试LLaVA-OV模型时,在MMMU验证集上出现了显著的性能差异。具体表现为官方报告的MMMU得分为48.3,而通过lmms-eval框架评估得到的分数为43.5,存在约5分的差距。
问题现象
LLaVA-OV是一种基于Qwen2-7B架构的多模态大模型,在多项视觉语言任务上表现优异。开发者在尝试使用lmms-eval框架复现该模型性能时,注意到:
- 在AI2D、ChartQA、MMBench(英文开发集)和SeedBench(图像部分)等基准测试中,能够成功复现官方报告的性能指标
- 唯独在MMMU(多学科多模态理解)验证集上出现了明显的性能下降
- 性能差距达到4.8分(从48.3降至43.5),这在模型评估中属于显著差异
技术分析
MMMU是一个具有挑战性的多模态评估基准,它要求模型具备跨学科的知识理解和复杂的推理能力。性能差异可能源于以下几个技术因素:
- 评估框架版本问题:不同版本的评估工具可能在数据处理、指标计算或评分标准上存在细微差异
- 预处理流程差异:图像和文本的预处理方式不同可能导致模型输入存在偏差
- 评估模式设置:可能存在不同的评估模式(如zero-shot与few-shot)导致结果差异
- 随机性因素:模型推理过程中的随机采样策略可能影响最终结果
解决方案
开发者通过更新代码库至最新版本解决了这一问题。这表明:
- 项目团队可能已经识别并修复了与MMMU评估相关的bug
- 评估流程中的某些关键组件在更新前后存在行为差异
- 保持评估工具与模型代码的同步更新对于获得一致结果至关重要
经验总结
这一案例为多模态模型评估提供了重要启示:
- 版本一致性:在复现模型性能时,确保使用与原始报告完全相同的代码版本
- 全面验证:不应仅依赖部分基准的复现结果,而应在所有相关测试集上验证一致性
- 更新机制:建立定期更新评估工具的习惯,以获取最新的修复和改进
- 差异分析:当出现性能差异时,应系统性地排查可能的影响因素
对于从事多模态模型研究和开发的团队,这一经验强调了评估工具与模型性能之间的紧密关联,以及在学术研究中确保结果可复现性的重要性。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
245
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
662
313
React Native鸿蒙化仓库
JavaScript
262
323
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
860
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218