LMMS-Eval项目中LLaVA-OV模型在MMMU基准上的性能差异分析
2025-07-01 22:01:29作者:乔或婵
背景介绍
在开源项目EvolvingLMMs-Lab/lmms-eval的使用过程中,开发者发现了一个值得关注的现象:当使用该评估框架测试LLaVA-OV模型时,在MMMU验证集上出现了显著的性能差异。具体表现为官方报告的MMMU得分为48.3,而通过lmms-eval框架评估得到的分数为43.5,存在约5分的差距。
问题现象
LLaVA-OV是一种基于Qwen2-7B架构的多模态大模型,在多项视觉语言任务上表现优异。开发者在尝试使用lmms-eval框架复现该模型性能时,注意到:
- 在AI2D、ChartQA、MMBench(英文开发集)和SeedBench(图像部分)等基准测试中,能够成功复现官方报告的性能指标
- 唯独在MMMU(多学科多模态理解)验证集上出现了明显的性能下降
- 性能差距达到4.8分(从48.3降至43.5),这在模型评估中属于显著差异
技术分析
MMMU是一个具有挑战性的多模态评估基准,它要求模型具备跨学科的知识理解和复杂的推理能力。性能差异可能源于以下几个技术因素:
- 评估框架版本问题:不同版本的评估工具可能在数据处理、指标计算或评分标准上存在细微差异
- 预处理流程差异:图像和文本的预处理方式不同可能导致模型输入存在偏差
- 评估模式设置:可能存在不同的评估模式(如zero-shot与few-shot)导致结果差异
- 随机性因素:模型推理过程中的随机采样策略可能影响最终结果
解决方案
开发者通过更新代码库至最新版本解决了这一问题。这表明:
- 项目团队可能已经识别并修复了与MMMU评估相关的bug
- 评估流程中的某些关键组件在更新前后存在行为差异
- 保持评估工具与模型代码的同步更新对于获得一致结果至关重要
经验总结
这一案例为多模态模型评估提供了重要启示:
- 版本一致性:在复现模型性能时,确保使用与原始报告完全相同的代码版本
- 全面验证:不应仅依赖部分基准的复现结果,而应在所有相关测试集上验证一致性
- 更新机制:建立定期更新评估工具的习惯,以获取最新的修复和改进
- 差异分析:当出现性能差异时,应系统性地排查可能的影响因素
对于从事多模态模型研究和开发的团队,这一经验强调了评估工具与模型性能之间的紧密关联,以及在学术研究中确保结果可复现性的重要性。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
537
3.76 K
暂无简介
Dart
773
192
Ascend Extension for PyTorch
Python
343
405
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
755
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
356
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
180
AscendNPU-IR
C++
86
142
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
249