LMMS-Eval项目中LLaVA-OV模型在MMMU基准上的性能差异分析
2025-07-01 22:01:29作者:乔或婵
背景介绍
在开源项目EvolvingLMMs-Lab/lmms-eval的使用过程中,开发者发现了一个值得关注的现象:当使用该评估框架测试LLaVA-OV模型时,在MMMU验证集上出现了显著的性能差异。具体表现为官方报告的MMMU得分为48.3,而通过lmms-eval框架评估得到的分数为43.5,存在约5分的差距。
问题现象
LLaVA-OV是一种基于Qwen2-7B架构的多模态大模型,在多项视觉语言任务上表现优异。开发者在尝试使用lmms-eval框架复现该模型性能时,注意到:
- 在AI2D、ChartQA、MMBench(英文开发集)和SeedBench(图像部分)等基准测试中,能够成功复现官方报告的性能指标
- 唯独在MMMU(多学科多模态理解)验证集上出现了明显的性能下降
- 性能差距达到4.8分(从48.3降至43.5),这在模型评估中属于显著差异
技术分析
MMMU是一个具有挑战性的多模态评估基准,它要求模型具备跨学科的知识理解和复杂的推理能力。性能差异可能源于以下几个技术因素:
- 评估框架版本问题:不同版本的评估工具可能在数据处理、指标计算或评分标准上存在细微差异
- 预处理流程差异:图像和文本的预处理方式不同可能导致模型输入存在偏差
- 评估模式设置:可能存在不同的评估模式(如zero-shot与few-shot)导致结果差异
- 随机性因素:模型推理过程中的随机采样策略可能影响最终结果
解决方案
开发者通过更新代码库至最新版本解决了这一问题。这表明:
- 项目团队可能已经识别并修复了与MMMU评估相关的bug
- 评估流程中的某些关键组件在更新前后存在行为差异
- 保持评估工具与模型代码的同步更新对于获得一致结果至关重要
经验总结
这一案例为多模态模型评估提供了重要启示:
- 版本一致性:在复现模型性能时,确保使用与原始报告完全相同的代码版本
- 全面验证:不应仅依赖部分基准的复现结果,而应在所有相关测试集上验证一致性
- 更新机制:建立定期更新评估工具的习惯,以获取最新的修复和改进
- 差异分析:当出现性能差异时,应系统性地排查可能的影响因素
对于从事多模态模型研究和开发的团队,这一经验强调了评估工具与模型性能之间的紧密关联,以及在学术研究中确保结果可复现性的重要性。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C075
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 Qt控件CSS样式实例大全 - 打造现代化GUI界面的终极指南 Python开发者的macOS终极指南:VSCode安装配置全攻略 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 单总线CPU设计实训代码:计算机组成原理最佳学习资源 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 SAP S4HANA物料管理资源全面解析:从入门到精通的完整指南
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
462
3.44 K
暂无简介
Dart
713
170
Ascend Extension for PyTorch
Python
268
305
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
190
74
React Native鸿蒙化仓库
JavaScript
283
331
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
842
419
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
453
130
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
105
119