LMMS-Eval项目中LLaVA-OV模型在MMMU基准上的性能差异分析
2025-07-01 22:01:29作者:乔或婵
背景介绍
在开源项目EvolvingLMMs-Lab/lmms-eval的使用过程中,开发者发现了一个值得关注的现象:当使用该评估框架测试LLaVA-OV模型时,在MMMU验证集上出现了显著的性能差异。具体表现为官方报告的MMMU得分为48.3,而通过lmms-eval框架评估得到的分数为43.5,存在约5分的差距。
问题现象
LLaVA-OV是一种基于Qwen2-7B架构的多模态大模型,在多项视觉语言任务上表现优异。开发者在尝试使用lmms-eval框架复现该模型性能时,注意到:
- 在AI2D、ChartQA、MMBench(英文开发集)和SeedBench(图像部分)等基准测试中,能够成功复现官方报告的性能指标
- 唯独在MMMU(多学科多模态理解)验证集上出现了明显的性能下降
- 性能差距达到4.8分(从48.3降至43.5),这在模型评估中属于显著差异
技术分析
MMMU是一个具有挑战性的多模态评估基准,它要求模型具备跨学科的知识理解和复杂的推理能力。性能差异可能源于以下几个技术因素:
- 评估框架版本问题:不同版本的评估工具可能在数据处理、指标计算或评分标准上存在细微差异
- 预处理流程差异:图像和文本的预处理方式不同可能导致模型输入存在偏差
- 评估模式设置:可能存在不同的评估模式(如zero-shot与few-shot)导致结果差异
- 随机性因素:模型推理过程中的随机采样策略可能影响最终结果
解决方案
开发者通过更新代码库至最新版本解决了这一问题。这表明:
- 项目团队可能已经识别并修复了与MMMU评估相关的bug
- 评估流程中的某些关键组件在更新前后存在行为差异
- 保持评估工具与模型代码的同步更新对于获得一致结果至关重要
经验总结
这一案例为多模态模型评估提供了重要启示:
- 版本一致性:在复现模型性能时,确保使用与原始报告完全相同的代码版本
- 全面验证:不应仅依赖部分基准的复现结果,而应在所有相关测试集上验证一致性
- 更新机制:建立定期更新评估工具的习惯,以获取最新的修复和改进
- 差异分析:当出现性能差异时,应系统性地排查可能的影响因素
对于从事多模态模型研究和开发的团队,这一经验强调了评估工具与模型性能之间的紧密关联,以及在学术研究中确保结果可复现性的重要性。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
华为项目管理十大模板:全面提升项目管理效率 VBA到JavaScript转换器:开启编程语言转换新篇章 Gradle-6.5-bin资源文件下载:项目核心功能及场景 AI中台白皮书:引领企业智能化转型的智慧宝典 PAK打包解包工具:助力L版征途改版,简化资源文件操作 VelodyneVLP-16激光雷达SolidWorks三维模型下载仓库介绍 WindowsXP简体中文语言包:让英文版用户轻松切换中文界面 电子工程师必备-元器件应用宝典:一本不可多得的电子元件学习宝库 SM3350量产工具最新完美版介绍:适用于SM3350芯片的量产利器 H265_HEVC测试视频资源下载介绍:全方位满足您的测试需求
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134