PyCUDA 技术文档
2024-12-25 10:34:52作者:冯爽妲Honey
1. 安装指南
1.1 系统要求
- 操作系统:Linux, Windows, macOS
- Python 版本:3.6 及以上
- CUDA 版本:9.0 及以上
- GPU:支持 CUDA 的 Nvidia GPU
1.2 安装步骤
-
安装 CUDA Toolkit:
- 从 Nvidia 官方网站下载并安装适合你操作系统的 CUDA Toolkit。
- 确保 CUDA 驱动程序已正确安装并配置。
-
安装 PyCUDA:
- 使用 pip 安装 PyCUDA:
pip install pycuda
- 使用 pip 安装 PyCUDA:
-
验证安装:
- 运行以下 Python 代码以验证 PyCUDA 是否安装成功:
import pycuda.driver as cuda cuda.init() print("PyCUDA 安装成功")
- 运行以下 Python 代码以验证 PyCUDA 是否安装成功:
2. 项目的使用说明
2.1 初始化
在使用 PyCUDA 之前,需要初始化 CUDA 驱动程序:
import pycuda.driver as cuda
cuda.init()
2.2 创建 CUDA 上下文
创建一个 CUDA 上下文以管理 GPU 资源:
import pycuda.autoinit
2.3 使用 GPUArray
PyCUDA 提供了 GPUArray 类,用于在 GPU 上创建和操作数组:
import pycuda.gpuarray as gpuarray
import numpy as np
# 创建一个 NumPy 数组
a = np.array([1, 2, 3], dtype=np.float32)
# 将数组传输到 GPU
a_gpu = gpuarray.to_gpu(a)
# 在 GPU 上进行操作
a_gpu += 1
# 将结果传输回 CPU
result = a_gpu.get()
print(result)
2.4 使用 SourceModule
SourceModule 允许你将 CUDA C 代码编译并加载到 GPU 上执行:
import pycuda.driver as cuda
import pycuda.autoinit
from pycuda.compiler import SourceModule
mod = SourceModule("""
__global__ void add_kernel(float *a, float *b, float *c)
{
int idx = threadIdx.x;
c[idx] = a[idx] + b[idx];
}
""")
add_kernel = mod.get_function("add_kernel")
a = np.array([1, 2, 3], dtype=np.float32)
b = np.array([4, 5, 6], dtype=np.float32)
c = np.zeros_like(a)
add_kernel(cuda.In(a), cuda.In(b), cuda.Out(c), block=(3, 1, 1))
print(c)
3. 项目API使用文档
3.1 pycuda.driver 模块
cuda.init():初始化 CUDA 驱动程序。cuda.Device(device_id):选择一个 GPU 设备。cuda.Context.attach():附加到当前 CUDA 上下文。cuda.Context.detach():从当前 CUDA 上下文分离。
3.2 pycuda.gpuarray 模块
gpuarray.to_gpu(array):将 NumPy 数组传输到 GPU。gpuarray.empty(shape, dtype):在 GPU 上创建一个未初始化的数组。gpuarray.zeros(shape, dtype):在 GPU 上创建一个全零数组。gpuarray.get():将 GPU 数组传输回 CPU。
3.3 pycuda.compiler 模块
SourceModule(source_code):编译并加载 CUDA C 代码。mod.get_function(function_name):获取编译后的 CUDA 函数。
4. 项目安装方式
4.1 使用 pip 安装
pip install pycuda
4.2 从源码安装
- 克隆 PyCUDA 仓库:
git clone https://github.com/inducer/pycuda.git - 进入项目目录:
cd pycuda - 安装依赖:
pip install -r requirements.txt - 编译并安装:
python setup.py install
通过以上步骤,你可以成功安装并使用 PyCUDA 进行 GPU 加速计算。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
291
2.62 K
deepin linux kernel
C
24
7
React Native鸿蒙化仓库
JavaScript
227
306
Ascend Extension for PyTorch
Python
122
149
暂无简介
Dart
579
127
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
606
183
仓颉编译器源码及 cjdb 调试工具。
C++
121
338
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.04 K
610
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,专门为Transformer模型的训练和推理而设计。
C++
46
77
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
358
2.19 K