PyCUDA 技术文档
2024-12-25 04:22:41作者:冯爽妲Honey
1. 安装指南
1.1 系统要求
- 操作系统:Linux, Windows, macOS
- Python 版本:3.6 及以上
- CUDA 版本:9.0 及以上
- GPU:支持 CUDA 的 Nvidia GPU
1.2 安装步骤
-
安装 CUDA Toolkit:
- 从 Nvidia 官方网站下载并安装适合你操作系统的 CUDA Toolkit。
- 确保 CUDA 驱动程序已正确安装并配置。
-
安装 PyCUDA:
- 使用 pip 安装 PyCUDA:
pip install pycuda
- 使用 pip 安装 PyCUDA:
-
验证安装:
- 运行以下 Python 代码以验证 PyCUDA 是否安装成功:
import pycuda.driver as cuda cuda.init() print("PyCUDA 安装成功")
- 运行以下 Python 代码以验证 PyCUDA 是否安装成功:
2. 项目的使用说明
2.1 初始化
在使用 PyCUDA 之前,需要初始化 CUDA 驱动程序:
import pycuda.driver as cuda
cuda.init()
2.2 创建 CUDA 上下文
创建一个 CUDA 上下文以管理 GPU 资源:
import pycuda.autoinit
2.3 使用 GPUArray
PyCUDA 提供了 GPUArray 类,用于在 GPU 上创建和操作数组:
import pycuda.gpuarray as gpuarray
import numpy as np
# 创建一个 NumPy 数组
a = np.array([1, 2, 3], dtype=np.float32)
# 将数组传输到 GPU
a_gpu = gpuarray.to_gpu(a)
# 在 GPU 上进行操作
a_gpu += 1
# 将结果传输回 CPU
result = a_gpu.get()
print(result)
2.4 使用 SourceModule
SourceModule 允许你将 CUDA C 代码编译并加载到 GPU 上执行:
import pycuda.driver as cuda
import pycuda.autoinit
from pycuda.compiler import SourceModule
mod = SourceModule("""
__global__ void add_kernel(float *a, float *b, float *c)
{
int idx = threadIdx.x;
c[idx] = a[idx] + b[idx];
}
""")
add_kernel = mod.get_function("add_kernel")
a = np.array([1, 2, 3], dtype=np.float32)
b = np.array([4, 5, 6], dtype=np.float32)
c = np.zeros_like(a)
add_kernel(cuda.In(a), cuda.In(b), cuda.Out(c), block=(3, 1, 1))
print(c)
3. 项目API使用文档
3.1 pycuda.driver 模块
cuda.init():初始化 CUDA 驱动程序。cuda.Device(device_id):选择一个 GPU 设备。cuda.Context.attach():附加到当前 CUDA 上下文。cuda.Context.detach():从当前 CUDA 上下文分离。
3.2 pycuda.gpuarray 模块
gpuarray.to_gpu(array):将 NumPy 数组传输到 GPU。gpuarray.empty(shape, dtype):在 GPU 上创建一个未初始化的数组。gpuarray.zeros(shape, dtype):在 GPU 上创建一个全零数组。gpuarray.get():将 GPU 数组传输回 CPU。
3.3 pycuda.compiler 模块
SourceModule(source_code):编译并加载 CUDA C 代码。mod.get_function(function_name):获取编译后的 CUDA 函数。
4. 项目安装方式
4.1 使用 pip 安装
pip install pycuda
4.2 从源码安装
- 克隆 PyCUDA 仓库:
git clone https://github.com/inducer/pycuda.git - 进入项目目录:
cd pycuda - 安装依赖:
pip install -r requirements.txt - 编译并安装:
python setup.py install
通过以上步骤,你可以成功安装并使用 PyCUDA 进行 GPU 加速计算。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
772
191
Ascend Extension for PyTorch
Python
340
405
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178