探索空间网络分析的利器:PySAL-Spaghetti
2024-09-21 02:33:43作者:何举烈Damon
项目介绍
PySAL-Spaghetti
是一个开源的 Python 库,专门用于网络型空间数据的分析。它起源于 PySAL (Python Spatial Analysis Library) 的 network
模块,目前正处于活跃开发阶段,旨在引入新的方法来构建图论网络并分析网络事件。Spaghetti
不仅继承了 PySAL 的强大功能,还扩展了其在网络分析领域的应用,使其成为空间数据科学家和网络分析爱好者的理想工具。
项目技术分析
PySAL-Spaghetti
的核心技术基于图论和网络分析,结合了 PySAL 的空间权重功能,能够生成网络段的邻接对象。其技术栈包括:
- 依赖库:
esda
,geopandas
,libpysal
,libspatialindex
,numpy
,rtree
,scipy
,shapely
等。 - 安装方式:推荐使用
conda
通过conda-forge
渠道安装,也可以通过PyPI
安装。 - 开发环境:支持 Python 3.10 及以上版本。
项目及技术应用场景
PySAL-Spaghetti
适用于多种应用场景,包括但不限于:
- 城市规划:分析交通网络、基础设施布局等。
- 物流优化:优化配送路线、仓库选址等。
- 地理信息系统 (GIS):处理和分析空间网络数据。
- 社会网络分析:研究人际关系、社区结构等。
项目特点
- 强大的网络分析功能:
Spaghetti
提供了丰富的网络分析工具,如最小生成树、最短路径可视化等。 - 与 PySAL 生态无缝集成:能够与 PySAL 的其他模块(如
esda
,libpysal
等)协同工作,提供全面的空间分析解决方案。 - 活跃的社区支持:项目拥有活跃的开发者社区,用户可以通过 GitHub、Discord 等平台获取支持。
- 易于安装和使用:支持
conda
和pip
安装,提供了详细的文档和教程,方便用户快速上手。
结语
PySAL-Spaghetti
是一个功能强大且易于使用的空间网络分析工具,无论你是空间数据科学家还是网络分析爱好者,它都能为你提供强大的支持。快来加入我们,探索空间网络分析的无限可能吧!
参考文献
如果你在科学出版物中使用了 PySAL-Spaghetti
,请引用以下文献:
@article{Gaboardi2021,
doi = {10.21105/joss.02826},
url = {https://doi.org/10.21105/joss.02826},
year = {2021},
publisher = {The Open Journal},
volume = {6},
number = {62},
pages = {2826},
author = {James D. Gaboardi and Sergio Rey and Stefanie Lumnitz},
title = {spaghetti: spatial network analysis in PySAL},
journal = {Journal of Open Source Software}
}
@misc{Gaboardi2018,
author = {Gaboardi, James D. and Laura, Jay and Rey, Sergio and
Wolf, Levi John and Folch, David C. and Kang, Wei and
Stephens, Philip and Schmidt, Charles},
month = {oct},
year = {2018},
title = {pysal/spaghetti},
url = {https://github.com/pysal/spaghetti},
doi = {10.5281/zenodo.1343650},
keywords = {graph-theory,network-analysis,python,spatial-networks,topology}
}
项目地址:pysal/spaghetti
热门项目推荐
- CangjieCommunity为仓颉编程语言开发者打造活跃、开放、高质量的社区环境Markdown00
- redis-sdk仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。Cangjie032
- 每日精选项目🔥🔥 推荐每日行业内最新、增长最快的项目,快速了解行业最新热门项目动态~ 🔥🔥02
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX022
- Yi-CoderYi Coder 编程模型,小而强大的编程助手HTML07
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript085
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09
- CommunityCangjie-TPC(Third Party Components)仓颉编程语言三方库社区资源汇总05
- Bbrew🍺 The missing package manager for macOS (or Linux)Ruby01
- byzer-langByzer(以前的 MLSQL):一种用于数据管道、分析和人工智能的低代码开源编程语言。Scala04
热门内容推荐
最新内容推荐
项目优选
收起
openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
824
0
redis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
375
32
advanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
qwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
easy-es
Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
8
1
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
RuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
markdown4cj
一个markdown解析和展示的库
Cangjie
10
0