FuelTS项目网络测试套件中的谓词测试优化方案
2025-05-01 11:38:12作者:秋泉律Samson
在FuelTS项目的网络测试套件中,我们发现了一个需要优化的测试用例实现细节。这个测试用例涉及谓词(Predicate)功能的验证,目前采用了一种不够灵活的硬编码资金金额处理方式,这可能会随着网络环境变化而导致测试失败。
当前实现的问题分析
谓词测试是FuelTS项目网络测试套件中的重要组成部分,主要用于验证智能合约中条件判断逻辑的正确性。在现有实现中,测试用例在执行交易前会预先设置一个固定的资金金额。这种做法存在两个主要问题:
- 网络兼容性问题:不同的Fuel网络节点可能具有不同的gas费用标准,固定的资金金额无法适应各种网络环境
 - 升级维护问题:当网络协议升级导致gas计算规则变化时,需要手动调整测试代码中的硬编码值
 
技术解决方案
为了解决上述问题,我们建议采用动态资金计算方案。具体实现思路如下:
1. 交易预估机制
在执行实际交易前,先通过燃料估算接口获取当前网络环境下交易执行所需的大致gas消耗量。Fuel网络提供了相应的API可以返回交易预估结果。
2. 动态资金计算
基于预估的gas消耗量,结合当前网络的gas价格参数,动态计算出测试所需的最低资金金额。计算公式可表示为:
所需资金 = 预估Gas用量 × Gas单价 + 缓冲值
其中缓冲值是为了应对网络波动而设置的额外金额,通常可以设置为预估值的10-20%。
3. 资金充足性检查
在测试执行前,增加资金充足性验证步骤。如果账户余额不足,可以采取以下策略之一:
- 自动跳过当前测试并标记为待验证状态
 - 尝试自动获取测试资金(在测试网络环境下)
 - 抛出明确的错误信息指导开发者处理
 
实现示例
以下是改进后的测试代码结构示例:
describe('Predicate测试', () => {
  it('应正确处理谓词逻辑', async () => {
    // 1. 获取当前网络gas参数
    const gasParams = await provider.getGasParams();
    
    // 2. 预估交易成本
    const estimatedGas = await predicate.estimateGas();
    
    // 3. 计算所需资金
    const requiredFunds = estimatedGas.mul(gasParams.gasPrice).mul(1.2); // 增加20%缓冲
    
    // 4. 验证资金充足
    const balance = await wallet.getBalance();
    if (balance.lt(requiredFunds)) {
      // 处理资金不足情况
    }
    
    // 5. 执行测试交易
    const tx = await predicate.submitTransaction();
    await tx.waitForResult();
    
    // 断言验证
    expect(tx.status).toBe('success');
  });
});
最佳实践建议
- 环境适配:为不同网络环境(测试网、开发网等)配置不同的缓冲系数
 - 日志记录:记录每次测试的实际gas消耗,用于后续分析和优化
 - 容错处理:为gas预估失败的情况准备备用方案
 - 性能考量:考虑缓存gas参数以减少不必要的网络请求
 
预期收益
实施此优化方案后,FuelTS项目的网络测试套件将获得以下改进:
- 提高测试用例的跨网络兼容性
 - 减少因网络升级导致的测试失败
 - 增强测试的稳定性和可靠性
 - 提供更准确的测试环境反馈
 
这种动态资金计算机制不仅适用于谓词测试,也可以推广到FuelTS项目中的其他需要交易资金管理的测试场景,为项目提供更加健壮的测试基础设施。
登录后查看全文 
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
 
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
274
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
222
302
Ascend Extension for PyTorch
Python
103
132
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
597
157
暂无简介
Dart
564
126
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
239
14
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
仓颉编译器源码及 cjdb 调试工具。
C++
118
98
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
445