FuelTS项目网络测试套件中的谓词测试优化方案
2025-05-01 11:38:12作者:秋泉律Samson
在FuelTS项目的网络测试套件中,我们发现了一个需要优化的测试用例实现细节。这个测试用例涉及谓词(Predicate)功能的验证,目前采用了一种不够灵活的硬编码资金金额处理方式,这可能会随着网络环境变化而导致测试失败。
当前实现的问题分析
谓词测试是FuelTS项目网络测试套件中的重要组成部分,主要用于验证智能合约中条件判断逻辑的正确性。在现有实现中,测试用例在执行交易前会预先设置一个固定的资金金额。这种做法存在两个主要问题:
- 网络兼容性问题:不同的Fuel网络节点可能具有不同的gas费用标准,固定的资金金额无法适应各种网络环境
- 升级维护问题:当网络协议升级导致gas计算规则变化时,需要手动调整测试代码中的硬编码值
技术解决方案
为了解决上述问题,我们建议采用动态资金计算方案。具体实现思路如下:
1. 交易预估机制
在执行实际交易前,先通过燃料估算接口获取当前网络环境下交易执行所需的大致gas消耗量。Fuel网络提供了相应的API可以返回交易预估结果。
2. 动态资金计算
基于预估的gas消耗量,结合当前网络的gas价格参数,动态计算出测试所需的最低资金金额。计算公式可表示为:
所需资金 = 预估Gas用量 × Gas单价 + 缓冲值
其中缓冲值是为了应对网络波动而设置的额外金额,通常可以设置为预估值的10-20%。
3. 资金充足性检查
在测试执行前,增加资金充足性验证步骤。如果账户余额不足,可以采取以下策略之一:
- 自动跳过当前测试并标记为待验证状态
- 尝试自动获取测试资金(在测试网络环境下)
- 抛出明确的错误信息指导开发者处理
实现示例
以下是改进后的测试代码结构示例:
describe('Predicate测试', () => {
it('应正确处理谓词逻辑', async () => {
// 1. 获取当前网络gas参数
const gasParams = await provider.getGasParams();
// 2. 预估交易成本
const estimatedGas = await predicate.estimateGas();
// 3. 计算所需资金
const requiredFunds = estimatedGas.mul(gasParams.gasPrice).mul(1.2); // 增加20%缓冲
// 4. 验证资金充足
const balance = await wallet.getBalance();
if (balance.lt(requiredFunds)) {
// 处理资金不足情况
}
// 5. 执行测试交易
const tx = await predicate.submitTransaction();
await tx.waitForResult();
// 断言验证
expect(tx.status).toBe('success');
});
});
最佳实践建议
- 环境适配:为不同网络环境(测试网、开发网等)配置不同的缓冲系数
- 日志记录:记录每次测试的实际gas消耗,用于后续分析和优化
- 容错处理:为gas预估失败的情况准备备用方案
- 性能考量:考虑缓存gas参数以减少不必要的网络请求
预期收益
实施此优化方案后,FuelTS项目的网络测试套件将获得以下改进:
- 提高测试用例的跨网络兼容性
- 减少因网络升级导致的测试失败
- 增强测试的稳定性和可靠性
- 提供更准确的测试环境反馈
这种动态资金计算机制不仅适用于谓词测试,也可以推广到FuelTS项目中的其他需要交易资金管理的测试场景,为项目提供更加健壮的测试基础设施。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++096AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp音乐播放器项目中的函数调用问题解析2 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析3 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析4 freeCodeCamp课程视频测验中的Tab键导航问题解析5 freeCodeCamp课程中屏幕放大器知识点优化分析6 freeCodeCamp Cafe Menu项目中link元素的void特性解析7 freeCodeCamp英语课程填空题提示缺失问题分析8 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 9 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析10 freeCodeCamp全栈开发课程中React实验项目的分类修正
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
197
2.17 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
59
94

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
974
574

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
549
81

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133