Ragbits项目解析:构建高效GenAI应用的模块化工具集
2025-06-05 16:05:46作者:伍霜盼Ellen
项目概述
Ragbits是一个专为快速开发生成式AI(GenAI)应用而设计的模块化工具集。它提供了一系列构建块(building blocks),帮助开发者快速搭建可靠、可扩展的AI应用系统。项目采用Python编写,支持类型安全的LLM调用、灵活的文档检索以及便捷的部署监控功能。
核心特性
1. 可靠且可扩展的GenAI应用构建
多模型支持:
- 支持通过LiteLLM接口切换100+种大语言模型
- 可无缝切换云端模型和本地部署模型
- 提供类型安全的Python泛型支持,确保模型交互的严格类型检查
向量存储集成:
- 内置支持Qdrant、PgVector等多种向量数据库
- 开发者可以轻松接入自定义向量存储方案
- 提供内存向量存储(InMemoryVectorStore)用于快速原型开发
开发者工具:
- 内置CLI工具管理向量存储和查询管道
- 支持从终端直接测试提示词(prompt)
- 模块化安装设计,可按需安装组件减少依赖
2. 高效灵活的RAG处理
文档处理能力:
- 支持20+种文档格式(PDF、HTML、电子表格等)
- 可处理复杂文档结构(表格、图片等)
- 基于Docling或Unstructured的文档解析器,也可自定义
数据源连接:
- 预置S3、GCS、Azure等云存储连接器
- 支持自定义数据源实现
- 基于Ray的分布式处理能力,可快速处理大规模数据集
3. 部署与监控
可观测性:
- 集成OpenTelemetry实现实时性能追踪
- 提供CLI工具查看运行指标
- 内置promptfoo支持提示词测试验证
自动优化:
- 持续评估和优化模型性能
- 提供聊天机器人UI界面,支持API、持久化和用户反馈
快速入门指南
基础使用示例
以下代码展示了如何定义一个类型安全的提示词并与LLM交互:
from pydantic import BaseModel
from ragbits.core.llms import LiteLLM
from ragbits.core.prompt import Prompt
# 定义输入输出模型
class QAInput(BaseModel):
question: str
class QAOutput(BaseModel):
answer: str
# 创建提示词模板
class QAPrompt(Prompt[QAInput, QAOutput]):
system_prompt = "你是一个问答助手,请尽力回答问题。"
user_prompt = "问题: {{ question }}"
# 初始化LLM
llm = LiteLLM(model_name="gpt-4.1-nano", use_structured_output=True)
# 使用提示词
prompt = QAPrompt(QAInput(question="Linux中的高内存和低内存是什么?"))
response = await llm.generate(prompt)
print(response.answer)
文档检索实现
构建简单的向量存储索引并查询:
from ragbits.core.embeddings import LiteLLMEmbedder
from ragbits.document_search import DocumentSearch
# 初始化嵌入模型和向量存储
embedder = LiteLLMEmbedder(model_name="text-embedding-3-small")
vector_store = InMemoryVectorStore(embedder=embedder)
document_search = DocumentSearch(vector_store=vector_store)
# 摄取文档并查询
await document_search.ingest("web://https://arxiv.org/pdf/1706.03762")
result = await document_search.search("这篇论文的主要发现是什么?")
print(result)
RAG管道构建
结合检索和生成的完整RAG示例:
# 定义带上下文的提示词
class RAGPromptInput(BaseModel):
question: str
context: list[str]
class RAGPrompt(Prompt[RAGPromptInput, str]):
system_prompt = "你是一个问答助手,请基于给定上下文回答问题。"
user_prompt = """
问题: {{ question }}
上下文: {% for item in context %}{{ item }}{% endfor %}
"""
# 构建RAG流程
question = "这篇论文的主要发现是什么?"
await document_search.ingest("web://https://arxiv.org/pdf/1706.03762")
result = await document_search.search(question)
prompt = RAGPrompt(RAGPromptInput(
question=question,
context=[element.text_representation for element in result],
))
response = await llm.generate(prompt)
print(response)
进阶功能
聊天机器人接口
Ragbits提供了完整的聊天机器人开发框架:
from ragbits.chat.api import RagbitsAPI
from ragbits.chat.interface import ChatInterface
class MyChatBot(ChatInterface):
async def setup(self):
# 初始化检索组件
self.embedder = LiteLLMEmbedder(model_name="text-embedding-3-small")
self.vector_store = InMemoryVectorStore(embedder=self.embedder)
self.document_search = DocumentSearch(vector_store=self.vector_store)
await self.document_search.ingest("web://https://arxiv.org/pdf/1706.03762")
async def chat(self, message, history=None, context=None):
# 实现聊天逻辑
result = await self.document_search.search(message)
prompt = RAGPrompt(RAGPromptInput(
question=message,
context=[element.text_representation for element in result],
))
async for chunk in self.llm.generate_streaming(prompt):
yield self.create_text_response(chunk)
# 启动API服务
RagbitsAPI(MyChatBot).run()
项目优势
- 开发效率:提供从提示词设计到部署的全套工具链,显著缩短开发周期
- 灵活性:模块化设计允许按需组合功能,避免不必要的依赖
- 可靠性:类型安全设计和内置测试工具提高应用稳定性
- 可扩展性:分布式处理能力支持业务规模增长
- 可观测性:完善的监控体系保障生产环境运行质量
适用场景
Ragbits特别适合以下应用场景:
- 企业知识问答系统
- 智能客服机器人
- 文档分析与检索系统
- AI辅助研究工具
- 个性化推荐系统
通过其模块化设计和丰富的功能集,Ragbits为开发者提供了构建生产级GenAI应用的高效路径。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
261

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
860
511

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
259
300

deepin linux kernel
C
22
5

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
596
57

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K