Ragbits项目解析:构建高效GenAI应用的模块化工具集
2025-06-05 12:51:55作者:伍霜盼Ellen
项目概述
Ragbits是一个专为快速开发生成式AI(GenAI)应用而设计的模块化工具集。它提供了一系列构建块(building blocks),帮助开发者快速搭建可靠、可扩展的AI应用系统。项目采用Python编写,支持类型安全的LLM调用、灵活的文档检索以及便捷的部署监控功能。
核心特性
1. 可靠且可扩展的GenAI应用构建
多模型支持:
- 支持通过LiteLLM接口切换100+种大语言模型
- 可无缝切换云端模型和本地部署模型
- 提供类型安全的Python泛型支持,确保模型交互的严格类型检查
向量存储集成:
- 内置支持Qdrant、PgVector等多种向量数据库
- 开发者可以轻松接入自定义向量存储方案
- 提供内存向量存储(InMemoryVectorStore)用于快速原型开发
开发者工具:
- 内置CLI工具管理向量存储和查询管道
- 支持从终端直接测试提示词(prompt)
- 模块化安装设计,可按需安装组件减少依赖
2. 高效灵活的RAG处理
文档处理能力:
- 支持20+种文档格式(PDF、HTML、电子表格等)
- 可处理复杂文档结构(表格、图片等)
- 基于Docling或Unstructured的文档解析器,也可自定义
数据源连接:
- 预置S3、GCS、Azure等云存储连接器
- 支持自定义数据源实现
- 基于Ray的分布式处理能力,可快速处理大规模数据集
3. 部署与监控
可观测性:
- 集成OpenTelemetry实现实时性能追踪
- 提供CLI工具查看运行指标
- 内置promptfoo支持提示词测试验证
自动优化:
- 持续评估和优化模型性能
- 提供聊天机器人UI界面,支持API、持久化和用户反馈
快速入门指南
基础使用示例
以下代码展示了如何定义一个类型安全的提示词并与LLM交互:
from pydantic import BaseModel
from ragbits.core.llms import LiteLLM
from ragbits.core.prompt import Prompt
# 定义输入输出模型
class QAInput(BaseModel):
question: str
class QAOutput(BaseModel):
answer: str
# 创建提示词模板
class QAPrompt(Prompt[QAInput, QAOutput]):
system_prompt = "你是一个问答助手,请尽力回答问题。"
user_prompt = "问题: {{ question }}"
# 初始化LLM
llm = LiteLLM(model_name="gpt-4.1-nano", use_structured_output=True)
# 使用提示词
prompt = QAPrompt(QAInput(question="Linux中的高内存和低内存是什么?"))
response = await llm.generate(prompt)
print(response.answer)
文档检索实现
构建简单的向量存储索引并查询:
from ragbits.core.embeddings import LiteLLMEmbedder
from ragbits.document_search import DocumentSearch
# 初始化嵌入模型和向量存储
embedder = LiteLLMEmbedder(model_name="text-embedding-3-small")
vector_store = InMemoryVectorStore(embedder=embedder)
document_search = DocumentSearch(vector_store=vector_store)
# 摄取文档并查询
await document_search.ingest("web://https://arxiv.org/pdf/1706.03762")
result = await document_search.search("这篇论文的主要发现是什么?")
print(result)
RAG管道构建
结合检索和生成的完整RAG示例:
# 定义带上下文的提示词
class RAGPromptInput(BaseModel):
question: str
context: list[str]
class RAGPrompt(Prompt[RAGPromptInput, str]):
system_prompt = "你是一个问答助手,请基于给定上下文回答问题。"
user_prompt = """
问题: {{ question }}
上下文: {% for item in context %}{{ item }}{% endfor %}
"""
# 构建RAG流程
question = "这篇论文的主要发现是什么?"
await document_search.ingest("web://https://arxiv.org/pdf/1706.03762")
result = await document_search.search(question)
prompt = RAGPrompt(RAGPromptInput(
question=question,
context=[element.text_representation for element in result],
))
response = await llm.generate(prompt)
print(response)
进阶功能
聊天机器人接口
Ragbits提供了完整的聊天机器人开发框架:
from ragbits.chat.api import RagbitsAPI
from ragbits.chat.interface import ChatInterface
class MyChatBot(ChatInterface):
async def setup(self):
# 初始化检索组件
self.embedder = LiteLLMEmbedder(model_name="text-embedding-3-small")
self.vector_store = InMemoryVectorStore(embedder=self.embedder)
self.document_search = DocumentSearch(vector_store=self.vector_store)
await self.document_search.ingest("web://https://arxiv.org/pdf/1706.03762")
async def chat(self, message, history=None, context=None):
# 实现聊天逻辑
result = await self.document_search.search(message)
prompt = RAGPrompt(RAGPromptInput(
question=message,
context=[element.text_representation for element in result],
))
async for chunk in self.llm.generate_streaming(prompt):
yield self.create_text_response(chunk)
# 启动API服务
RagbitsAPI(MyChatBot).run()
项目优势
- 开发效率:提供从提示词设计到部署的全套工具链,显著缩短开发周期
- 灵活性:模块化设计允许按需组合功能,避免不必要的依赖
- 可靠性:类型安全设计和内置测试工具提高应用稳定性
- 可扩展性:分布式处理能力支持业务规模增长
- 可观测性:完善的监控体系保障生产环境运行质量
适用场景
Ragbits特别适合以下应用场景:
- 企业知识问答系统
- 智能客服机器人
- 文档分析与检索系统
- AI辅助研究工具
- 个性化推荐系统
通过其模块化设计和丰富的功能集,Ragbits为开发者提供了构建生产级GenAI应用的高效路径。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C086
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python057
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0137
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 STM32到GD32项目移植完全指南:从兼容性到实战技巧 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
472
3.49 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
719
173
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
213
86
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
696
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1