AutoGPTQ项目中Cholesky分解错误的分析与解决方案
2025-06-11 01:33:15作者:牧宁李
问题背景
在使用AutoGPTQ项目对大型语言模型(如LLaMA风格的16B参数、32k上下文长度的模型)进行量化时,用户报告在第43层量化过程中频繁出现torch._C._LinAlgError: linalg.cholesky错误。该错误表明在进行Cholesky分解时遇到了数值问题,导致量化过程无法完成。
技术原理
Cholesky分解是一种将对称正定矩阵分解为下三角矩阵及其转置乘积的算法。在GPTQ量化过程中,Cholesky分解用于处理Hessian矩阵,这是优化量化参数的关键步骤。当Hessian矩阵不是正定矩阵时,Cholesky分解就会失败。
错误原因分析
- Hessian矩阵不正定:量化过程中计算的Hessian矩阵可能由于数值不稳定或输入数据问题而失去正定性
- 校准数据集问题:不合适的校准数据可能导致Hessian矩阵计算异常
- 模型规模影响:大型模型(如16B参数)的量化过程更容易出现数值不稳定问题
- 超参数设置:damp_percent等参数设置不当可能影响矩阵条件数
解决方案
-
调整校准数据集:
- 尝试使用不同分布或来源的校准数据
- 增加校准样本数量(如从128增加到1024)
- 确保校准数据具有代表性
-
修改量化参数:
- 调整damp_percent参数(尝试0.01到0.2之间的值)
- 结合使用更大的校准数据集和适中的damp值
-
数值稳定性增强:
- 在Hessian矩阵对角线上添加小的正则项
- 使用更稳定的矩阵分解替代方案
-
代码层面修改:
- 捕获Cholesky分解异常并提供更有意义的错误信息
- 实现自动参数调整机制
最佳实践建议
对于大型模型量化,建议:
- 准备高质量、多样化的校准数据集
- 从较小的damp值(如0.01)开始尝试
- 监控量化过程中各层的表现,及时发现潜在问题
- 考虑分阶段量化,先量化部分层验证稳定性
总结
Cholesky分解错误是大型模型量化过程中的常见问题,通常与数值稳定性相关。通过合理调整校准数据和量化参数,大多数情况下可以解决这一问题。AutoGPTQ项目团队正在持续改进量化算法的稳定性,未来版本有望提供更健壮的量化方案。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C098
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
最新内容推荐
探索未来显示技术:Adafruit_SH1106 图形库 推荐使用 taggingJS:一款轻量级的前端标签插件!【亲测免费】 探索像素级完美的结构化运动:PixSFM 推荐开源项目:DropPoint - 让拖放操作更简单【亲测免费】 推荐开源项目:picocom——小巧而强大的串口通信工具 推荐使用:NATS .NET 客户端【亲测免费】 推荐开源项目:MiracleCast - 智能无线显示实现 探索安全新维度:backdoor-apk 动态后门注入工具 探秘Viasfora:Visual Studio 2022的文本编辑增强利器 推荐使用:go-reuseport - 实现高效端口复用的Go语言库
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
477
3.56 K
React Native鸿蒙化仓库
JavaScript
287
340
暂无简介
Dart
728
175
Ascend Extension for PyTorch
Python
287
320
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
446
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
233
98
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
450
180
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.28 K
704