MCP Feedback Collector 项目深度使用指南:AI工作反馈收集系统详解
2025-06-19 07:00:03作者:段琳惟
项目概述
MCP Feedback Collector 是一款专为AI协作场景设计的反馈收集工具,它通过Web界面实现人机交互过程中的高效反馈收集。该系统特别适合AI助手完成工作后获取人类用户的评价和建议,形成完整的协作闭环。
核心功能架构
1. 多模式运行架构
该系统提供三种主要运行模式:
- 命令行模式:快速启动反馈收集流程
- Web服务模式:提供完整的Web界面功能
- 集成模式:可嵌入到其他AI协作平台中使用
2. 反馈收集流程
完整的反馈收集流程包含以下环节:
- AI工作成果展示
- 用户反馈输入
- 多媒体附件支持
- 智能提交选项
详细安装指南
基础安装方式
推荐使用Node.js环境运行,有两种安装选择:
# 临时运行模式(无需安装)
npx mcp-feedback-collector
# 全局安装模式
npm install -g mcp-feedback-collector
mcp-feedback-collector
开发环境搭建
如需进行二次开发,需要完整克隆项目并安装依赖:
git clone <项目地址>
cd mcp-feedback-collector
npm install
npm run dev # 启动开发模式
核心使用场景解析
场景一:AI协作平台集成
在AI协作环境中,可以这样配置集成:
- 服务端配置:
{
"mcpServers": {
"mcp-feedback-collector": {
"command": "npx",
"args": ["mcp-feedback-collector"],
"env": {
"MCP_API_KEY": "your_api_key_here"
}
}
}
}
- 调用示例:
请使用collect_feedback工具收集用户对我工作的反馈。
工作内容:
- 完成用户模块API开发
- 实现JWT认证
- 编写单元测试
场景二:独立Web服务
启动独立Web服务:
npx mcp-feedback-collector --web --port 5000
访问本地服务后,系统提供:
- 工作汇报展示区
- 反馈输入表单
- 图片上传功能
- 多种提交选项
高级功能详解
图片处理功能
-
支持格式:
- 常见图片格式:JPG/PNG/GIF等
- 最大支持10MB文件
- 多图片批量处理
-
智能图片转文字:
- 基于AI的图片内容分析
- 自动生成描述文本
- 解决客户端兼容性问题
配置管理系统
通过.env文件可配置:
# API配置
MCP_API_KEY="your_key"
MCP_API_BASE_URL="https://api.example.com"
# 功能开关
MCP_ENABLE_CHAT="true"
MCP_ENABLE_IMAGE_TO_TEXT="true"
# 安全设置
MCP_MAX_FILE_SIZE="10485760" # 10MB限制
最佳实践建议
有效的工作汇报撰写
优质的工作汇报应包含:
- 任务概述
- 关键技术点
- 测试验证结果
- 待确认问题
示例:
已完成支付模块开发:
✅ 功能实现:
- 支付宝/微信支付接入
- 订单状态管理
- 支付结果回调
🔧 技术细节:
- 使用RSA加密
- 实现幂等性处理
- 添加重试机制
❓ 待确认:
1. 支付超时时间设置是否合理?
2. 是否需要增加支付方式?
反馈收集技巧
建议用户提供:
- 具体的问题定位
- 可操作的改进建议
- 相关场景示例
- 优先级评估
故障排查指南
常见问题处理
-
连接问题:
- 检查端口占用情况
- 验证网络连接
- 查看服务日志
-
功能异常:
- 确认配置正确性
- 检查依赖版本
- 尝试重置状态
调试模式使用
启用详细日志:
export LOG_LEVEL=debug
npx mcp-feedback-collector
常用诊断命令:
# 配置检查
npx mcp-feedback-collector config
# 健康检查
npx mcp-feedback-collector health
系统优化建议
-
性能优化:
- 控制图片分辨率
- 合理设置超时时间
- 定期清理会话数据
-
安全建议:
- 使用HTTPS协议
- 限制CORS来源
- 定期更新API密钥
版本管理与升级
查看当前版本:
npx mcp-feedback-collector --version
升级到最新版:
npm update -g mcp-feedback-collector
总结
MCP Feedback Collector 为AI协作场景提供了专业级的反馈收集解决方案,通过其丰富的功能和灵活的配置选项,能够满足不同场景下的需求。无论是集成到现有AI平台,还是作为独立服务使用,都能显著提升人机协作的效率和效果。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava03GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0289- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
854
505

deepin linux kernel
C
21
5

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
246
288

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

智能无人机路径规划仿真系统是一个具有操作控制精细、平台整合性强、全方向模型建立与应用自动化特点的软件。它以A、B两国在C区开展无人机战争为背景,该系统的核心功能是通过仿真平台规划无人机航线,并进行验证输出,数据可导入真实无人机,使其按照规定路线精准抵达战场任一位置,支持多人多设备编队联合行动。
JavaScript
78
55

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
7
0

基于全新 DevUI Design 设计体系的 Vue3 组件库,面向研发工具的开源前端解决方案。
TypeScript
615
74

React Native鸿蒙化仓库
C++
176
260

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
331
1.08 K