Logfire项目中实现特定函数采样率控制的实践指南
2025-06-26 07:12:52作者:韦蓉瑛
在分布式系统监控和日志收集领域,采样率控制是平衡系统开销与观测完整性的重要技术手段。本文将深入探讨如何在Logfire项目中针对特定API端点实现精细化采样控制。
采样率控制的核心价值
采样率控制允许开发者根据业务需求对不同类型的观测数据采用不同的采集频率。对于高频访问的端点,适当降低采样率可以显著减少系统资源消耗;而对于关键业务接口,则保持完整采集以确保问题可追溯性。
Logfire采样机制解析
Logfire基于OpenTelemetry实现了灵活的采样控制体系。其核心采样器包括:
ALWAYS_ON:全量采集模式TraceIdRatioBased:基于TraceID的比率采样ParentBased:继承父Span采样决策的采样器
实现特定端点采样控制
以下示例展示了如何为FastAPI应用中的/hello端点配置50%采样率,同时保持其他端点全量采集:
from opentelemetry.sdk.trace.sampling import (
ALWAYS_ON,
ParentBased,
Sampler,
TraceIdRatioBased,
)
class EndpointAwareSampler(Sampler):
def should_sample(self, parent_context, trace_id, name, *args, **kwargs):
# 为/hello端点配置50%采样率
if name == 'GET /hello':
sampler = TraceIdRatioBased(0.5)
else:
sampler = ALWAYS_ON
return sampler.should_sample(parent_context, trace_id, name, *args, **kwargs)
def get_description(self):
return 'EndpointAwareSampler'
集成到FastAPI应用
将自定义采样器集成到FastAPI应用中只需简单配置:
import logfire
from fastapi import FastAPI
logfire.configure(
sampling=logfire.SamplingOptions(
head=ParentBased(EndpointAwareSampler())
)
)
app = FastAPI()
logfire.instrument_fastapi(app)
高级采样策略建议
- 多级采样:可以结合端点路径、HTTP方法等多维度条件实现更精细的控制
- 动态调整:通过配置中心实现采样率的运行时动态调整
- 异常优先:考虑实现异常请求的全量采集,正常请求的采样采集
性能考量
实施采样控制时需注意:
- 采样判断逻辑应保持轻量级
- 避免在采样器中进行复杂计算或IO操作
- 在高并发场景下测试采样器的性能影响
通过这种精细化的采样控制,开发者可以在保证关键观测数据完整性的同时,有效控制系统资源消耗,实现观测成本与效益的最佳平衡。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
413
3.18 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
Ascend Extension for PyTorch
Python
228
258
暂无简介
Dart
679
160
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
325
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
React Native鸿蒙化仓库
JavaScript
265
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
492