Apache Arrow项目TPCH-03基准测试回归问题分析
Apache Arrow项目近期在基准测试中发现了一个关于TPCH-03查询的性能回归和结果错误问题。这个问题最初在项目的持续集成系统中被发现,Conbench基准测试平台报告了TPCH-03查询出现了明显的性能下降和结果验证失败。
问题现象
在基准测试结果中,TPCH-03查询的o_shippriority列出现了异常值。根据TPCH标准规范,这一列应该全部为0,但测试结果显示该列出现了各种非零值。具体表现为:
o_shippriority
- old[1, ] 2330369
+ new[1, ] 0
- old[2, ] 3466209
+ new[2, ] 0
...
这种数据不一致导致了基准测试验证失败,同时也可能影响了查询性能。问题首次出现在PR #45336之后,该PR涉及连接(join)和聚合(aggregation)操作的代码路径修改,而TPCH Q3查询正好包含大量的连接和聚合操作。
技术分析
问题的根源在于数据处理逻辑中对于o_shippriority列的处理出现了错误。在Arrow项目的R语言基准测试框架中,结果验证是通过waldo::compare函数进行的,该函数将实际查询结果(result)与预期答案(answer)进行对比。
基准测试框架中的验证代码如下:
all_equal_out <- waldo::compare(result, answer, tolerance = 0.01)
根据waldo包的文档,比较结果中的"old"表示第一个参数(result),即实际查询结果;"new"表示第二个参数(answer),即预期答案。测试结果显示实际查询结果中的o_shippriority列出现了非零值,而预期答案中该列应为全零。
解决方案
项目维护者通过PR #45473修复了这个问题。修复主要针对数据处理逻辑中关于o_shippriority列的错误处理,确保该列能够正确保持全零值,符合TPCH标准规范。
经验总结
-
基准测试的重要性:这个问题凸显了全面基准测试的价值,不仅测试性能,还要验证结果的正确性。
-
变更影响评估:当修改涉及核心数据处理逻辑(如连接和聚合)时,需要特别谨慎,并进行全面的回归测试。
-
测试结果解读:正确理解测试框架的输出对于快速定位问题至关重要,需要熟悉测试工具的比较逻辑和输出格式。
这个问题也提醒开发者,性能优化有时可能会意外引入逻辑错误,因此在追求性能提升的同时,必须确保结果的正确性。Arrow项目通过其完善的基准测试体系及时发现了这一问题,体现了成熟开源项目的质量控制水平。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCR暂无简介Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00