treat: 静态提取的CSS-in-JS主题化库
项目介绍
treat 是一个已经归档的开源项目,原由 Seek OSS 维护。它提供了一种主题化的、静态提取的 CSS-in-JS 解决方案,旨在实现近乎零运行时的性能。该库允许开发者在构建时处理样式,确保在最终的应用中仅需交换预存在的类名,大大减轻了运行时的负担。即使是在不涉及主题变更的场景下,也可完全省略运行时。treat 支持通过JavaScript或TypeScript来书写样式,并且天然兼容webpack环境,尤其适合React和TypeScript项目,同时也易于集成到其他框架。
项目快速启动
要快速开始使用treat,首先需要安装其核心库:
$ yarn add treat
然后,在webpack配置中添加treat插件及相应的CSS提取插件(如mini-css-extract-plugin):
const [TreatPlugin] = require('treat/webpack-plugin');
const MiniCssExtractPlugin = require('mini-css-extract-plugin');
module.exports = {
plugins: [
new TreatPlugin([
{ outputLoaders: [MiniCssExtractPlugin.loader] }
]),
new MiniCssExtractPlugin()
]
};
创建一个treat文件来定义样式:
// Button.treat.ts
import { style } from 'treat';
export const button = style({
backgroundColor: 'blue',
height: 48,
});
接下来,从你的组件中引入并使用这些样式:
// Button.js
import * as styles from './Button.treat';
import React from 'react';
export const Button = ({ children }) => (
<button className={styles.button}>{children}</button>
);
请注意,由于此项目已被废弃,实际应用应考虑迁移至推荐的替代方案,如Vanilla Extract。
应用案例与最佳实践
虽然treat本身已不再维护,但其设计原则——将样式逻辑前置到构建阶段并支持主题化,对现代前端开发仍有借鉴意义。最佳实践中,应该关注样式模块的清晰划分,利用TypeScript的类型系统增强样式的可读性和健壮性,以及在大型项目中合理组织主题文件,确保代码的可维护性和灵活性。
典型生态项目
随着treat的废弃,寻找类似的生态项目变得重要。尽管treat不再更新,社区中存在多个活跃的CSS-in-JS库继续发展,比如Emotion和styled-components,它们同样支持主题化并且有着丰富的生态系统。对于那些寻求现代解决方案的开发者,研究这些生态中的最佳实践和用例将是前行的方向。
请注意,由于treat已归档,上述信息是基于其最后公开状态提供的,实际应用时需谨慎评估替代品或寻找仍在维护的类似工具。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00