Foyer项目v0.17.0版本发布:混合缓存系统的重要升级
Foyer是一个用Rust语言开发的高性能混合缓存系统,它结合了内存缓存和磁盘缓存的优势,为应用程序提供高效的缓存解决方案。在最新发布的v0.17.0版本中,Foyer带来了一系列重要的改进和新特性,显著提升了系统的性能和可用性。
核心特性改进
1. 缓存条目属性重构
新版本对缓存条目的属性管理进行了重大重构,将ephemeral(临时性)、hint(提示)和location(位置)等属性统一打包到CacheProperties和HybridCacheProperties结构中。开发者现在可以通过insert_with_properties()和fetch_with_properties()方法来设置这些属性,这使得API更加统一和简洁。
对于从旧版本迁移的用户,需要将原来的.insert_with_hint()、.insert_ephemeral()等方法替换为新的属性设置接口。
2. 磁盘缓存插入优化
v0.17.0版本改进了从磁盘缓存填充条目的处理机制:
- 引入了基于年龄的FIFO策略来管理大型对象的磁盘缓存
- 跟踪内存缓存条目的来源
- 当内存缓存条目被插入到磁盘缓存时,系统会根据条目的来源和年龄决定是否跳过该操作,避免不必要的磁盘写入
3. 关闭时的缓存刷新支持
新版本增加了在关闭混合缓存时将内存中的缓存条目刷新到磁盘的功能。这一特性可以通过在混合缓存构建器中设置.with_flush_on_close(true)来启用,确保在系统关闭时不会丢失重要的缓存数据。
4. IO限流机制增强
IO限流功能得到了显著增强:
- 支持基于读写IOPS和吞吐量的高级限流
- 支持按IO计数或IO计数加IO大小两种方式进行IO统计
- 移除了旧的
RateLimiterAmissionPicker,改为直接在设备级别设置IO限流
5. 请求去重与单次飞行优化
磁盘缓存现在支持通过fetch()接口实现请求去重和单次飞行优化。开发者可以使用.fetch_with_properties()API,并将HybridCacheProperties中的location设置为Location::OnDisk来利用这一优化。
其他重要改进
-
构建器API:新增了
builder()API,为Cache和HybridCache提供了更便捷的构建方式。 -
依赖优化:默认情况下不再包含tracing依赖,需要通过启用
tracing特性来使用相关功能。 -
性能监控:升级了
mixtrics到v0.1版本,改进了性能监控能力。 -
Grafana仪表板:改进了Grafana仪表板的变量设置,提供更灵活的监控视图。
-
指标收集:增加了对LODC索引器插入冲突的指标收集,帮助开发者更好地理解系统行为。
性能优化
新版本在多个方面进行了性能优化:
- 通过年龄感知的磁盘缓存插入策略减少了不必要的磁盘写入
- 优化的IO限流机制可以更精确地控制资源使用
- 请求去重和单次飞行优化减少了重复操作的开销
- 改进了内存缓存到磁盘缓存的刷新机制,减少了关闭时的性能冲击
迁移指南
对于从旧版本升级的用户,需要注意以下变更:
- 缓存属性API的变化,需要使用新的
insert_with_properties()和fetch_with_properties()方法 - IO限流设置方式的变化,现在直接在设备级别配置
- 如需使用tracing功能,需要显式启用
tracing特性 - 关闭时刷新功能需要显式启用
Foyer v0.17.0版本通过这一系列改进,为开发者提供了更强大、更灵活的缓存解决方案,特别是在大规模数据处理和高并发场景下,能够提供更稳定和高效的性能表现。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00