Sentence-Transformers项目中SoftmaxLoss训练问题的技术分析
2025-05-13 16:07:42作者:史锋燃Gardner
问题背景
在Sentence-Transformers项目中,SoftmaxLoss是一个常用的损失函数,主要用于分类任务。该损失函数内部包含一个分类器(classifier),用于将句子嵌入向量映射到类别空间。然而,近期有开发者发现这个分类器的参数在训练过程中似乎没有被正确更新。
技术细节分析
通过深入代码分析,我们发现问题的根源在于优化器的参数设置机制。在SentenceTransformerTrainer中,优化器默认只会收集主模型(SentenceTransformer)的参数,而不会自动包含损失函数内部的参数。
具体来说,SoftmaxLoss中的分类器虽然被正确初始化,并且设置了requires_grad=True,但由于以下原因导致其参数未被更新:
- 分类器定义在损失函数内部,而不是主模型结构中
- 默认的优化器创建逻辑仅收集主模型的参数
- 损失函数的参数没有被显式地传递给优化器
影响范围
这个问题会影响所有使用SoftmaxLoss进行训练的场景,特别是:
- 使用SentenceTransformerTrainer进行训练时
- 当损失函数内部包含可训练参数时
- 在分类任务中依赖SoftmaxLoss进行模型优化时
解决方案
项目维护者已经提出了修复方案,主要思路是重写get_optimizer_cls_and_kwargs方法,确保损失函数的参数也被包含在优化过程中。具体实现包括:
- 检查损失函数是否包含可训练参数
- 将这些参数分组(区分需要权重衰减和不需要权重衰减的参数)
- 将这些参数组添加到优化器的参数列表中
技术建议
对于使用Sentence-Transformers项目的开发者,我们建议:
- 如果使用SoftmaxLoss,请确保更新到包含修复的版本
- 对于自定义损失函数,如果包含可训练参数,需要检查这些参数是否被正确包含在优化过程中
- 在训练过程中,可以通过打印参数值或梯度来验证参数是否被正确更新
总结
这个问题揭示了深度学习框架中一个常见但容易被忽视的问题:当模型结构分散在不同组件中时,如何确保所有可训练参数都被正确优化。Sentence-Transformers项目的修复方案为类似场景提供了一个很好的参考实现,值得其他项目借鉴。
对于开发者而言,理解这种参数收集机制有助于更好地设计和调试复杂的深度学习模型,特别是在使用自定义组件或损失函数时。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
772
191
Ascend Extension for PyTorch
Python
341
405
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178