Sentence-Transformers项目中SoftmaxLoss训练问题的技术分析
2025-05-13 05:15:12作者:史锋燃Gardner
问题背景
在Sentence-Transformers项目中,SoftmaxLoss是一个常用的损失函数,主要用于分类任务。该损失函数内部包含一个分类器(classifier),用于将句子嵌入向量映射到类别空间。然而,近期有开发者发现这个分类器的参数在训练过程中似乎没有被正确更新。
技术细节分析
通过深入代码分析,我们发现问题的根源在于优化器的参数设置机制。在SentenceTransformerTrainer中,优化器默认只会收集主模型(SentenceTransformer)的参数,而不会自动包含损失函数内部的参数。
具体来说,SoftmaxLoss中的分类器虽然被正确初始化,并且设置了requires_grad=True,但由于以下原因导致其参数未被更新:
- 分类器定义在损失函数内部,而不是主模型结构中
- 默认的优化器创建逻辑仅收集主模型的参数
- 损失函数的参数没有被显式地传递给优化器
影响范围
这个问题会影响所有使用SoftmaxLoss进行训练的场景,特别是:
- 使用SentenceTransformerTrainer进行训练时
- 当损失函数内部包含可训练参数时
- 在分类任务中依赖SoftmaxLoss进行模型优化时
解决方案
项目维护者已经提出了修复方案,主要思路是重写get_optimizer_cls_and_kwargs方法,确保损失函数的参数也被包含在优化过程中。具体实现包括:
- 检查损失函数是否包含可训练参数
- 将这些参数分组(区分需要权重衰减和不需要权重衰减的参数)
- 将这些参数组添加到优化器的参数列表中
技术建议
对于使用Sentence-Transformers项目的开发者,我们建议:
- 如果使用SoftmaxLoss,请确保更新到包含修复的版本
- 对于自定义损失函数,如果包含可训练参数,需要检查这些参数是否被正确包含在优化过程中
- 在训练过程中,可以通过打印参数值或梯度来验证参数是否被正确更新
总结
这个问题揭示了深度学习框架中一个常见但容易被忽视的问题:当模型结构分散在不同组件中时,如何确保所有可训练参数都被正确优化。Sentence-Transformers项目的修复方案为类似场景提供了一个很好的参考实现,值得其他项目借鉴。
对于开发者而言,理解这种参数收集机制有助于更好地设计和调试复杂的深度学习模型,特别是在使用自定义组件或损失函数时。
登录后查看全文
热门项目推荐
相关项目推荐
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0267cinatra
c++20实现的跨平台、header only、跨平台的高性能http库。C++00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile06
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 SAP S4HANA物料管理资源全面解析:从入门到精通的完整指南 VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 OpenSSL 3.3.0资源下载指南:新一代加密库的全面解析与部署教程 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南
项目优选
收起

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
144
1.93 K

deepin linux kernel
C
22
6

React Native鸿蒙化仓库
C++
192
274

openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
930
553

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
423
392

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
75
66

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.11 K
0

本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
64
511