Sentence-Transformers项目中SoftmaxLoss训练问题的技术分析
2025-05-13 20:06:25作者:史锋燃Gardner
问题背景
在Sentence-Transformers项目中,SoftmaxLoss是一个常用的损失函数,主要用于分类任务。该损失函数内部包含一个分类器(classifier),用于将句子嵌入向量映射到类别空间。然而,近期有开发者发现这个分类器的参数在训练过程中似乎没有被正确更新。
技术细节分析
通过深入代码分析,我们发现问题的根源在于优化器的参数设置机制。在SentenceTransformerTrainer中,优化器默认只会收集主模型(SentenceTransformer)的参数,而不会自动包含损失函数内部的参数。
具体来说,SoftmaxLoss中的分类器虽然被正确初始化,并且设置了requires_grad=True,但由于以下原因导致其参数未被更新:
- 分类器定义在损失函数内部,而不是主模型结构中
- 默认的优化器创建逻辑仅收集主模型的参数
- 损失函数的参数没有被显式地传递给优化器
影响范围
这个问题会影响所有使用SoftmaxLoss进行训练的场景,特别是:
- 使用SentenceTransformerTrainer进行训练时
- 当损失函数内部包含可训练参数时
- 在分类任务中依赖SoftmaxLoss进行模型优化时
解决方案
项目维护者已经提出了修复方案,主要思路是重写get_optimizer_cls_and_kwargs方法,确保损失函数的参数也被包含在优化过程中。具体实现包括:
- 检查损失函数是否包含可训练参数
- 将这些参数分组(区分需要权重衰减和不需要权重衰减的参数)
- 将这些参数组添加到优化器的参数列表中
技术建议
对于使用Sentence-Transformers项目的开发者,我们建议:
- 如果使用SoftmaxLoss,请确保更新到包含修复的版本
- 对于自定义损失函数,如果包含可训练参数,需要检查这些参数是否被正确包含在优化过程中
- 在训练过程中,可以通过打印参数值或梯度来验证参数是否被正确更新
总结
这个问题揭示了深度学习框架中一个常见但容易被忽视的问题:当模型结构分散在不同组件中时,如何确保所有可训练参数都被正确优化。Sentence-Transformers项目的修复方案为类似场景提供了一个很好的参考实现,值得其他项目借鉴。
对于开发者而言,理解这种参数收集机制有助于更好地设计和调试复杂的深度学习模型,特别是在使用自定义组件或损失函数时。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C083
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
466
3.47 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
715
172
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
203
82
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
695
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1