TAKG 的安装和配置教程
2025-05-28 15:24:35作者:盛欣凯Ernestine
1. 项目的基础介绍和主要的编程语言
TAKG(Topic-Aware Neural Keyphrase Generation)是一个基于深度学习的关键短语生成框架,旨在从社交媒体语言中生成关键短语。该项目的目标是解决社交媒体内容理解中的关键短语预测问题,通过序列到序列(seq2seq)的神经网络模型实现关键短语的生成。项目的主要编程语言是 Python。
2. 项目使用的关键技术和框架
该项目使用了以下关键技术和框架:
- 神经网络模型:使用基于 LSTM 的 seq2seq 模型进行关键短语生成。
- 主题模型:采用神经网络主题模型来引入潜在的文档主题,帮助缓解社交媒体语言中的数据稀疏性问题。
- 注意力机制:在模型中引入注意力机制,提高模型对源文本的理解能力。
- 复制注意力:通过复制注意力机制,允许模型从源文本中复制信息生成关键短语。
- PyTorch:使用 PyTorch 深度学习框架进行模型的实现和训练。
3. 项目安装和配置的准备工作和详细的安装步骤
准备工作
在开始安装之前,请确保您的系统满足以下要求:
- 操作系统:Linux 或 macOS
- Python 版本:3.5 或更高版本
- PyTorch 版本:0.4 或更高版本
安装步骤
以下是在您的系统上安装 TAKG 的详细步骤:
-
克隆项目仓库
打开命令行,使用以下命令克隆项目仓库:
git clone https://github.com/yuewang-cuhk/TAKG.git -
安装依赖
进入项目目录,安装项目所需的 Python 依赖:
cd TAKG pip install -r requirements.txt -
数据预处理
根据您的数据集,运行以下命令进行数据预处理:
python preprocess.py -data_dir <数据目录路径>替换
<数据目录路径>为您数据集所在的路径。 -
训练模型
使用以下命令开始训练模型:
python train.py -data_tag <数据标签>替换
<数据标签>为您的数据集标签。 -
模型预测
训练完成后,使用以下命令进行模型预测:
python predict.py -model <seq2seq模型路径> -ntm_model <主题模型路径>替换
<seq2seq模型路径>和<主题模型路径>为您的模型文件路径。 -
模型评估
使用以下命令评估模型性能:
python pred_evaluate.py -pred <预测结果路径> -src <测试源文件路径> -trg <测试目标文件路径>替换
<预测结果路径>,<测试源文件路径>和<测试目标文件路径>为相应的文件路径。
按照以上步骤,您应该能够成功安装和配置 TAKG 项目。如果遇到任何问题,请参考项目文档或联系项目维护者寻求帮助。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
537
3.75 K
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
755
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
179
AscendNPU-IR
C++
86
141
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
248