TAKG 的安装和配置教程
2025-05-28 01:01:31作者:盛欣凯Ernestine
1. 项目的基础介绍和主要的编程语言
TAKG(Topic-Aware Neural Keyphrase Generation)是一个基于深度学习的关键短语生成框架,旨在从社交媒体语言中生成关键短语。该项目的目标是解决社交媒体内容理解中的关键短语预测问题,通过序列到序列(seq2seq)的神经网络模型实现关键短语的生成。项目的主要编程语言是 Python。
2. 项目使用的关键技术和框架
该项目使用了以下关键技术和框架:
- 神经网络模型:使用基于 LSTM 的 seq2seq 模型进行关键短语生成。
- 主题模型:采用神经网络主题模型来引入潜在的文档主题,帮助缓解社交媒体语言中的数据稀疏性问题。
- 注意力机制:在模型中引入注意力机制,提高模型对源文本的理解能力。
- 复制注意力:通过复制注意力机制,允许模型从源文本中复制信息生成关键短语。
- PyTorch:使用 PyTorch 深度学习框架进行模型的实现和训练。
3. 项目安装和配置的准备工作和详细的安装步骤
准备工作
在开始安装之前,请确保您的系统满足以下要求:
- 操作系统:Linux 或 macOS
- Python 版本:3.5 或更高版本
- PyTorch 版本:0.4 或更高版本
安装步骤
以下是在您的系统上安装 TAKG 的详细步骤:
-
克隆项目仓库
打开命令行,使用以下命令克隆项目仓库:
git clone https://github.com/yuewang-cuhk/TAKG.git -
安装依赖
进入项目目录,安装项目所需的 Python 依赖:
cd TAKG pip install -r requirements.txt -
数据预处理
根据您的数据集,运行以下命令进行数据预处理:
python preprocess.py -data_dir <数据目录路径>替换
<数据目录路径>为您数据集所在的路径。 -
训练模型
使用以下命令开始训练模型:
python train.py -data_tag <数据标签>替换
<数据标签>为您的数据集标签。 -
模型预测
训练完成后,使用以下命令进行模型预测:
python predict.py -model <seq2seq模型路径> -ntm_model <主题模型路径>替换
<seq2seq模型路径>和<主题模型路径>为您的模型文件路径。 -
模型评估
使用以下命令评估模型性能:
python pred_evaluate.py -pred <预测结果路径> -src <测试源文件路径> -trg <测试目标文件路径>替换
<预测结果路径>,<测试源文件路径>和<测试目标文件路径>为相应的文件路径。
按照以上步骤,您应该能够成功安装和配置 TAKG 项目。如果遇到任何问题,请参考项目文档或联系项目维护者寻求帮助。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-X1-7BSpark-Prover-X1-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer-X1-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile015
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南 Jetson TX2开发板官方资源完全指南:从入门到精通 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 2023年最新HTMLCSSJS组件库:提升前端开发效率的必备资源 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
306
2.7 K
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
138
169
暂无简介
Dart
598
130
React Native鸿蒙化仓库
JavaScript
235
309
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
632
232
仓颉编译器源码及 cjdb 调试工具。
C++
123
710
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.06 K
616
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
197
74
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
460