首页
/ Plutus项目中的quotientInteger成本模型问题解析

Plutus项目中的quotientInteger成本模型问题解析

2025-07-10 21:10:12作者:蔡丛锟

背景介绍

在Plutus智能合约平台中,内置函数quotientInteger的成本模型实现存在一个值得关注的技术细节。这个函数用于计算两个整数的商,其成本计算方式直接影响着智能合约执行时的资源消耗评估。

成本模型问题分析

Plutus执行引擎使用不同的成本模型来评估内置函数的执行开销。对于quotientInteger函数,成本模型被标记为"constant above diagonal"(对角线上方为常数),这实际上是一个正确的设计选择,尽管初看起来可能令人困惑。

当计算quotientInteger x y时,如果x的位大小小于y(即在对角线上方),结果通常为0,计算过程非常简单。相反,如果x的位大小大于y(对角线下方),则需要执行更复杂的除法运算。因此,"constant above diagonal"的模型准确地反映了这一计算特性。

成本模型实现细节

Plutus项目中有多个成本模型文件(builtinCostModelA、builtinCostModelB和builtinCostModelC),它们分别对应不同的协议版本和Plutus语言版本:

  1. builtinCostModelA:用于PlutusV1和PlutusV2脚本,在Chang硬分叉前(协议版本<9)
  2. builtinCostModelB:用于PlutusV1和PlutusV2脚本,在Chang硬分叉后(协议版本≥9)
  3. builtinCostModelC:专用于PlutusV3脚本(仅存在于协议版本≥9)

这种多版本成本模型的并存增加了系统的复杂性,未来团队计划统一这些模型以简化维护。

开发实践中的发现

在第三方实现(如OpShin和Aiken)中,开发人员曾对quotientInteger的成本模型产生过疑问。特别是在OpShin的实现中,最初错误地实现了"constant above diagonal"逻辑,导致测试失败。这一问题的发现凸显了正确理解成本模型的重要性。

测试覆盖建议

当前的测试用例主要覆盖了对角线下方的复杂计算场景,建议增加对角线上方的测试案例,以验证成本模型在所有情况下的正确性。这将有助于未来实现者避免类似的实现错误。

总结

Plutus的成本模型系统是一个复杂但精妙的设计,quotientInteger函数的成本模型实现体现了对计算特性深入理解后的优化选择。随着Plutus平台的演进,成本模型系统有望变得更加统一和简化,但当前的多版本并存状态需要实现者特别注意。

登录后查看全文
热门项目推荐

热门内容推荐

最新内容推荐

项目优选

收起
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
143
1.91 K
kernelkernel
deepin linux kernel
C
22
6
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
192
273
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
927
551
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
421
392
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
75
64
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8