Plutus项目中的quotientInteger成本模型问题解析
背景介绍
在Plutus智能合约平台中,内置函数quotientInteger的成本模型实现存在一个值得关注的技术细节。这个函数用于计算两个整数的商,其成本计算方式直接影响着智能合约执行时的资源消耗评估。
成本模型问题分析
Plutus执行引擎使用不同的成本模型来评估内置函数的执行开销。对于quotientInteger函数,成本模型被标记为"constant above diagonal"(对角线上方为常数),这实际上是一个正确的设计选择,尽管初看起来可能令人困惑。
当计算quotientInteger x y时,如果x的位大小小于y(即在对角线上方),结果通常为0,计算过程非常简单。相反,如果x的位大小大于y(对角线下方),则需要执行更复杂的除法运算。因此,"constant above diagonal"的模型准确地反映了这一计算特性。
成本模型实现细节
Plutus项目中有多个成本模型文件(builtinCostModelA、builtinCostModelB和builtinCostModelC),它们分别对应不同的协议版本和Plutus语言版本:
- builtinCostModelA:用于PlutusV1和PlutusV2脚本,在Chang硬分叉前(协议版本<9)
- builtinCostModelB:用于PlutusV1和PlutusV2脚本,在Chang硬分叉后(协议版本≥9)
- builtinCostModelC:专用于PlutusV3脚本(仅存在于协议版本≥9)
这种多版本成本模型的并存增加了系统的复杂性,未来团队计划统一这些模型以简化维护。
开发实践中的发现
在第三方实现(如OpShin和Aiken)中,开发人员曾对quotientInteger的成本模型产生过疑问。特别是在OpShin的实现中,最初错误地实现了"constant above diagonal"逻辑,导致测试失败。这一问题的发现凸显了正确理解成本模型的重要性。
测试覆盖建议
当前的测试用例主要覆盖了对角线下方的复杂计算场景,建议增加对角线上方的测试案例,以验证成本模型在所有情况下的正确性。这将有助于未来实现者避免类似的实现错误。
总结
Plutus的成本模型系统是一个复杂但精妙的设计,quotientInteger函数的成本模型实现体现了对计算特性深入理解后的优化选择。随着Plutus平台的演进,成本模型系统有望变得更加统一和简化,但当前的多版本并存状态需要实现者特别注意。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00