LiteLLM项目中发现Haiku缓存读取的Token成本计算错误
2025-05-10 03:38:50作者:秋泉律Samson
在开源项目LiteLLM的最新版本(v1.64.1)中,发现了一个关于Anthropic Claude-3-5-Haiku模型缓存读取Token成本计算的错误。这个错误会导致系统对使用缓存读取功能的成本估算偏高,影响用户对API使用成本的准确评估。
问题本质
根据代码调试日志显示,当前系统将Haiku模型的cache_read_input_token_cost(缓存读取输入Token成本)设置为8e-07(即0.0000008美元/Token),而实际上这个值应该是8e-08(0.00000008美元/Token)。这意味着当前实现比正确值高出了10倍。
影响分析
- 成本估算偏差:系统会高估使用缓存读取功能的实际成本,可能导致用户对预算规划产生偏差。
- 功能使用决策:由于成本估算不准确,用户可能会不必要地避免使用缓存功能,尽管实际上它的成本效益更高。
- 计费准确性:如果这个参数也用于实际计费(而不仅仅是估算),会导致用户被多收费。
技术细节
在LiteLLM的成本计算模块中,模型的各种成本参数存储在model_cost字典结构中。对于Claude-3-5-Haiku-20241022模型,当前配置如下:
{
'input_cost_per_token': 8e-07, # 常规输入Token成本
'cache_creation_input_token_cost': 1e-06, # 缓存创建时的输入Token成本
'cache_read_input_token_cost': 8e-07 # 当前错误的缓存读取成本
}
正确的配置应该是将cache_read_input_token_cost改为8e-08,这样才符合Anthropic官方对Haiku模型缓存读取功能的定价策略。
解决方案
对于使用LiteLLM的开发者和运维人员,可以采取以下措施:
-
临时解决方案:在代码中手动覆盖这个参数值:
from litellm import model_cost model_cost['claude-3-5-haiku-20241022']['cache_read_input_token_cost'] = 8e-08 -
等待官方修复:关注LiteLLM项目的更新,在下一个版本中应该会修复这个问题。
-
成本监控:在使用缓存功能时,建议与实际账单进行比对,确保成本计算准确。
最佳实践建议
- 定期检查模型参数:特别是当使用新模型或新功能时,应该验证成本参数是否符合预期。
- 实现成本告警:设置阈值告警,当估算成本与实际成本偏差较大时发出通知。
- 理解缓存机制:充分了解缓存创建和读取的不同成本结构,合理规划缓存策略。
这个问题虽然看似是一个简单的参数错误,但在实际生产环境中可能对成本控制产生显著影响。建议所有使用LiteLLM连接Anthropic Haiku模型的团队检查并修正这个参数。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C030
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
425
3.26 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
334
暂无简介
Dart
686
161
Ascend Extension for PyTorch
Python
231
264
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
667
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
19
30