Brax训练过程中保存中间策略的技术实现
2025-06-29 17:49:07作者:彭桢灵Jeremy
概述
在使用Brax进行强化学习训练时,开发者经常需要保存训练过程中的中间策略用于分析和可视化。本文详细介绍如何在Brax训练过程中正确保存和使用中间策略参数,以及解决常见的参数类型错误问题。
核心问题
在Brax的PPO训练过程中,当尝试在回调函数中保存中间策略并进行可视化时,会遇到TypeError: argument of type 'PPONetworkParams' is not iterable的错误。这是因为PPO网络参数的结构与函数预期不符。
技术背景
Brax的PPO实现使用JAX作为后端,其网络参数采用特定的数据结构PPONetworkParams,包含策略网络(policy)和价值网络(value)两部分参数。当调用make_inference_fn生成推理函数时,需要正确传递这些参数。
解决方案
正确的参数传递方式是将PPO网络参数解构为元组形式:
inference_fn = self.make_inference_fn((params.policy, params.value))
或者当参数以列表形式存储时:
inference_fn = self.make_inference_fn((self.params[0], self.params[1].policy))
完整实现示例
以下是一个完整的训练和可视化实现示例:
import functools
import jax
from brax import envs
from brax.io import html
from brax.training.agents.ppo import train as ppo
from tqdm import tqdm
class RLTrainer:
def __init__(self):
self.env_name = 'ant'
self.backend = 'positional'
self.params = None
self.make_inference_fn = None
self.train_fn = None
def load_environment(self):
return envs.get_environment(env_name=self.env_name, backend=self.backend)
def policy_params_callback(self, step, make_policy, params):
self.make_inference_fn = make_policy
self.params = params
# 正确传递参数
inference_fn = self.make_inference_fn((params.policy, params.value))
self.visualize_trajectory(inference_fn)
def visualize_trajectory(self, inference_fn):
env = self.load_environment()
jit_env_reset = jax.jit(env.reset)
jit_env_step = jax.jit(env.step)
jit_inference_fn = jax.jit(inference_fn)
trajectory = []
rng = jax.random.PRNGKey(seed=1)
state = jit_env_reset(rng=rng)
for _ in tqdm(range(1000)):
trajectory.append(state.pipeline_state)
act_rng, rng = jax.random.split(rng)
act, _ = jit_inference_fn(state.obs, act_rng)
state = jit_env_step(state, act)
rendered_html = html.render(env.sys.replace(opt_timestep=env.dt), trajectory)
with open("trajectory.html", "w") as f:
f.write(rendered_html)
最佳实践
- 参数处理:始终明确PPO网络参数的结构,确保正确解构policy和value参数
- 性能考虑:在回调函数中进行可视化可能会影响训练速度,建议只在关键训练阶段保存策略
- 内存管理:定期清理不需要的中间策略,避免内存占用过高
- 版本控制:为保存的策略添加时间戳或训练步数标记,便于后续分析
总结
通过正确理解Brax中PPO网络参数的结构和处理方式,开发者可以有效地在训练过程中保存和可视化中间策略。这一技术对于模型调试、训练过程分析和策略改进都具有重要价值。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
404
暂无简介
Dart
771
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355