Brax训练过程中保存中间策略的技术实现
2025-06-29 17:49:07作者:彭桢灵Jeremy
概述
在使用Brax进行强化学习训练时,开发者经常需要保存训练过程中的中间策略用于分析和可视化。本文详细介绍如何在Brax训练过程中正确保存和使用中间策略参数,以及解决常见的参数类型错误问题。
核心问题
在Brax的PPO训练过程中,当尝试在回调函数中保存中间策略并进行可视化时,会遇到TypeError: argument of type 'PPONetworkParams' is not iterable的错误。这是因为PPO网络参数的结构与函数预期不符。
技术背景
Brax的PPO实现使用JAX作为后端,其网络参数采用特定的数据结构PPONetworkParams,包含策略网络(policy)和价值网络(value)两部分参数。当调用make_inference_fn生成推理函数时,需要正确传递这些参数。
解决方案
正确的参数传递方式是将PPO网络参数解构为元组形式:
inference_fn = self.make_inference_fn((params.policy, params.value))
或者当参数以列表形式存储时:
inference_fn = self.make_inference_fn((self.params[0], self.params[1].policy))
完整实现示例
以下是一个完整的训练和可视化实现示例:
import functools
import jax
from brax import envs
from brax.io import html
from brax.training.agents.ppo import train as ppo
from tqdm import tqdm
class RLTrainer:
def __init__(self):
self.env_name = 'ant'
self.backend = 'positional'
self.params = None
self.make_inference_fn = None
self.train_fn = None
def load_environment(self):
return envs.get_environment(env_name=self.env_name, backend=self.backend)
def policy_params_callback(self, step, make_policy, params):
self.make_inference_fn = make_policy
self.params = params
# 正确传递参数
inference_fn = self.make_inference_fn((params.policy, params.value))
self.visualize_trajectory(inference_fn)
def visualize_trajectory(self, inference_fn):
env = self.load_environment()
jit_env_reset = jax.jit(env.reset)
jit_env_step = jax.jit(env.step)
jit_inference_fn = jax.jit(inference_fn)
trajectory = []
rng = jax.random.PRNGKey(seed=1)
state = jit_env_reset(rng=rng)
for _ in tqdm(range(1000)):
trajectory.append(state.pipeline_state)
act_rng, rng = jax.random.split(rng)
act, _ = jit_inference_fn(state.obs, act_rng)
state = jit_env_step(state, act)
rendered_html = html.render(env.sys.replace(opt_timestep=env.dt), trajectory)
with open("trajectory.html", "w") as f:
f.write(rendered_html)
最佳实践
- 参数处理:始终明确PPO网络参数的结构,确保正确解构policy和value参数
- 性能考虑:在回调函数中进行可视化可能会影响训练速度,建议只在关键训练阶段保存策略
- 内存管理:定期清理不需要的中间策略,避免内存占用过高
- 版本控制:为保存的策略添加时间戳或训练步数标记,便于后续分析
总结
通过正确理解Brax中PPO网络参数的结构和处理方式,开发者可以有效地在训练过程中保存和可视化中间策略。这一技术对于模型调试、训练过程分析和策略改进都具有重要价值。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0134
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
499
3.66 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
870
483
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
310
134
React Native鸿蒙化仓库
JavaScript
297
347
暂无简介
Dart
745
180
Ascend Extension for PyTorch
Python
302
344
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
66
20
仓颉编译器源码及 cjdb 调试工具。
C++
150
882