在ejabberd容器中为自定义模块添加Erlang依赖项
2025-06-04 09:35:43作者:房伟宁
背景介绍
ejabberd是一个强大的XMPP服务器,支持通过自定义模块扩展功能。当使用Docker容器部署ejabberd时,为自定义模块添加依赖项可能会遇到一些挑战,特别是当这些依赖项需要编译环境支持时。
问题分析
在容器环境中为ejabberd自定义模块添加依赖项时,主要面临两个限制:
- ejabberd的
module_install命令对依赖项编译的支持有限,只能处理简单的依赖项 - 容器环境通常缺少完整的开发工具链,使得复杂依赖项的编译变得困难
解决方案
针对这个问题,我们推荐使用基于现有容器镜像的方法,通过以下步骤实现依赖项的安装:
1. 启动ejabberd容器
首先需要启动一个ejabberd容器实例。可以使用以下命令:
docker run --name ejabberd -it -p 5222:5222 ghcr.io/processone/ejabberd live
2. 安装必要的编译工具
进入容器并安装编译所需的工具链:
docker exec --user root ejabberd apk add elixir g++
3. 创建临时Mix项目
创建一个临时Mix项目来管理依赖项:
docker exec ejabberd mix new temp
4. 添加依赖项
编辑Mix项目的mix.exs文件,添加所需的依赖项。例如,要添加brod库:
docker exec ejabberd sed -i 's|# {:dep_from_hexpm|{:brod, ">= 3.17.0"} #|' /opt/ejabberd/temp/mix.exs
5. 获取并编译依赖项
获取依赖项并编译它们:
docker exec -w /opt/ejabberd/temp ejabberd mix do deps.get + release
6. 复制编译结果
将编译好的依赖项复制到ejabberd可以找到的位置:
docker exec -u root ejabberd cp -r /opt/ejabberd/temp/_build/dev/rel/deps/lib /opt/ejabberd-24.02
注意事项
- 对于纯Erlang库(如erlkaf),可能需要额外的系统依赖项
- 某些库可能需要特定的环境变量或配置才能正确编译
- 生产环境中应考虑将这些步骤自动化到Dockerfile中
- 每次容器重启后,这些更改可能会丢失,需要考虑持久化方案
替代方案
如果上述方法不适用,还可以考虑:
- 从源代码构建自定义的ejabberd镜像,包含所有需要的依赖项
- 将依赖项预编译后直接放入容器镜像中
- 使用多阶段构建来分离编译环境和运行环境
结论
在ejabberd容器中为自定义模块添加依赖项虽然有一定复杂性,但通过合理的方法完全可以实现。关键在于理解容器环境的特点和依赖项的编译要求。对于生产环境,建议将这个过程自动化并纳入CI/CD流程,确保部署的一致性和可靠性。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
215
235
暂无简介
Dart
662
152
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
253
320
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
660
297
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.18 K
646
openGauss kernel ~ openGauss is an open source relational database management system
C++
159
217
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
仓颉编程语言开发者文档。
59
818