jax-unirep 项目教程
2024-09-19 12:26:59作者:尤峻淳Whitney
1. 项目介绍
jax-unirep 是一个基于 JAX 框架的 UniRep 模型重实现项目。UniRep 模型最初由 George Church 实验室开发,用于蛋白质特征化。jax-unirep 项目不仅提供了 UniRep 模型的重实现,还增加了一些支持蛋白质工程工作流的实用 API。
该项目的主要特点包括:
- 高性能:使用 JAX 框架进行重实现,提供了更高的性能。
- 易定制:代码结构清晰,易于根据需求进行定制。
- 实用 API:提供了额外的 API,支持蛋白质工程工作流。
2. 项目快速启动
安装
确保你的计算环境支持运行 JAX 代码(例如,现代 Linux 或 macOS 系统,且 GLIBC>=2.23)。然后,你可以通过以下命令从 PyPI 安装 jax-unirep:
pip install jax-unirep
如果你想使用最新的开发版本,可以直接从 GitHub 源码安装:
pip install git+https://github.com/ElArkk/jax-unirep.git
示例代码
以下是一个简单的示例代码,展示如何使用 jax-unirep 生成蛋白质序列的表示:
from jax_unirep import get_reps
# 示例蛋白质序列
sequences = ["MVLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHGKKVADALTNAVAHVDDMPNALSALSDLHAHKLRVDPVNFKLLSHCLLVTLAAHLPAEFTPAVHASLDKFLASVSTVLTSKYR"]
# 生成表示
h_avg, h_final, c_final = get_reps(sequences)
print("平均隐藏状态:", h_avg)
print("最终隐藏状态:", h_final)
print("最终细胞状态:", c_final)
3. 应用案例和最佳实践
应用案例
jax-unirep 可以广泛应用于蛋白质工程和生物信息学领域。例如,它可以用于蛋白质序列的特征化,从而支持蛋白质设计、蛋白质功能预测等任务。
最佳实践
- 数据预处理:在使用
jax-unirep之前,确保蛋白质序列数据已经过适当的预处理,例如去除非标准氨基酸。 - 模型微调:如果需要,可以使用
jax-unirep提供的 API 对模型进行微调,以适应特定的蛋白质工程任务。 - 性能优化:在 GPU 上运行
jax-unirep可以显著提高计算速度,特别是在处理大量蛋白质序列时。
4. 典型生态项目
jax-unirep 作为一个高性能的蛋白质特征化工具,可以与其他生物信息学工具和框架结合使用,形成一个完整的蛋白质工程生态系统。以下是一些典型的生态项目:
- DeepChem:一个用于化学和生物信息学的深度学习库,可以与
jax-unirep结合使用,进行蛋白质-配体相互作用预测。 - AlphaFold:Google DeepMind 开发的蛋白质结构预测工具,可以与
jax-unirep结合使用,进行蛋白质结构和功能的联合预测。 - ProtTrans:一个基于 Transformer 的蛋白质序列表示模型,可以与
jax-unirep结合使用,进行多模态蛋白质特征化。
通过这些生态项目的结合,jax-unirep 可以在蛋白质工程和生物信息学领域发挥更大的作用。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Prover-X1-7BSpark-Prover 是由科大讯飞团队开发的专用大型语言模型,专为 Lean4 中的自动定理证明而设计。该模型采用创新的三阶段训练策略,显著增强了形式化推理能力,在同等规模的开源模型中实现了最先进的性能。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
Qt控件CSS样式实例大全 - 打造现代化GUI界面的终极指南 2023年最新HTMLCSSJS组件库:提升前端开发效率的必备资源 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
314
2.73 K
deepin linux kernel
C
24
7
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
639
245
仓颉编译器源码及 cjdb 调试工具。
C++
124
852
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
470
Ascend Extension for PyTorch
Python
154
178
暂无简介
Dart
605
136
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
239
84
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
364
3.01 K
React Native鸿蒙化仓库
JavaScript
238
310