使用joschu/cgt项目进行符号计算与自动微分教程
2025-07-02 07:13:46作者:裴麒琰
什么是joschu/cgt项目
joschu/cgt是一个用于符号计算和自动微分的Python库,它允许用户构建数学表达式图,并自动计算这些表达式的梯度。该库特别适合机器学习中的优化问题,能够高效地处理向量、矩阵运算,并支持GPU加速。
基本工作流程
1. 定义符号变量
首先需要创建符号变量,这些变量代表计算图中的输入节点:
import cgt
a = cgt.scalar(name='a') # 浮点型标量,可选名称参数
b = cgt.scalar(name='b')
n = cgt.scalar(name='n', dtype='int64') # 整型标量
这里创建了三个符号变量:两个浮点型标量a和b,一个整型标量n。这些变量将成为我们计算图的输入节点。
2. 构建表达式
利用这些变量构建更复杂的数学表达式:
c = (a**n + b**n)**(1.0/n)
CGT会自动重载基本运算符(如+、<、等),使得我们可以像操作普通数值一样操作这些符号变量。在后台,CGT会构建一个表示这个计算过程的有向无环图(DAG)**。
3. 编译为可执行函数
将符号表达式编译为可执行函数:
f = cgt.function([a,b,n], c)
print f(8,15,2) # 输出17.0
这个函数可以接受数值输入并返回计算结果。例如,当输入(8,15,2)时,计算的是(8² + 15²)的平方根,即17.0。
可视化计算图
CGT的一个强大功能是可以可视化计算图:
cgt.as_dot(c)
这将生成计算图的可视化表示,其中节点表示操作,边表示数据依赖关系。标签0和1表示函数参数的索引位置。
线性回归示例
让我们通过一个线性回归的例子展示更复杂的用法:
定义符号变量
X_nk = cgt.matrix("X") # 输入特征矩阵
y_n = cgt.vector("y") # 目标值向量
w_k = cgt.vector("w") # 权重向量
b = cgt.scalar("b") # 偏置项
构建预测和损失函数
ypred_n = X_nk.dot(w_k) + b # 线性预测
L = cgt.sum(cgt.square(ypred_n - y_n)) # 平方损失
print "L = ", cgt.print_expr(L)
这里我们构建了一个标准的线性回归模型,使用平方误差作为损失函数。
计算梯度
grads = dLdw, dLdb = cgt.grad(L, [w_k, b])
CGT使用反向模式自动微分(即反向传播算法)自动计算损失函数对参数的梯度。这些梯度本身也是符号表达式。
编译为可执行函数
f_loss = cgt.function([X_nk, y_n, w_k, b], L)
f_grads = cgt.function([X_nk, y_n, w_k, b], grads)
使用数值数据进行测试
import numpy as np, numpy.random as nr
nr.seed(0)
# 生成随机数据
Xval = nr.randn(100,3)
yval = nr.randn(100)
# 初始化参数
wval = nr.randn(3)
bval = nr.randn()
# 计算损失和梯度
print "loss:", f_loss(Xval, yval, wval, bval)
print "grad:", f_grads(Xval, yval, wval, bval)
优化参数
方法1:使用SciPy优化器
def f(theta):
return f_loss(Xval, yval, theta[0:3], theta[3])
def gradf(theta):
gw,gb = f_grads(Xval, yval, theta[0:3], theta[3])
return np.concatenate([gw,gb.reshape(1)])
import scipy.optimize as opt
theta_opt = opt.fmin_bfgs(f, np.zeros(4), gradf, disp=False)
print "Optimal theta:", theta_opt
方法2:使用CGT内置的优化
theta = cgt.vector('theta')
w_k_1 = theta[0:3]
b_1 = theta[3]
ypred_n_1 = X_nk.dot(w_k_1) + b_1
L_1 = cgt.sum(cgt.square(ypred_n_1 - y_n))
dLdtheta, = cgt.grad(L_1, [theta])
f = cgt.function([theta], L_1, givens=[(X_nk,Xval), (y_n,yval)])
gradf = cgt.function([theta], dLdtheta, givens=[(X_nk,Xval), (y_n,yval)])
theta_opt = opt.fmin_bfgs(f, np.zeros(4), gradf, disp=False)
print "Optimal theta:", theta_opt
方法3:使用共享变量和原地更新
这种方法特别适合大规模问题和GPU计算:
stepsize=0.001
w_k_2 = cgt.shared(wval.copy(), name='w')
b_2 = cgt.shared(bval, name='b')
ypred_n_2 = X_nk.dot(w_k_2) + b_2
L_2 = cgt.sum(cgt.square(ypred_n_2 - y_n))
dLdw_2,dLdb_2 = cgt.grad(L_2, [w_k_2, b_2])
updates = [(w_k_2, w_k_2 - stepsize*dLdw_2), (b_2, b_2 - stepsize*dLdb_2)]
givens = [(X_nk,Xval), (y_n,yval)]
f_update = cgt.function([], L_2, givens=givens, updates=updates)
for i in xrange(100):
f_update()
print w_k_2.op.get_value(), b_2.op.get_value()
总结
joschu/cgt项目提供了一个强大的符号计算和自动微分框架,特别适合机器学习中的优化问题。通过本教程,我们学习了:
- 如何定义符号变量和构建表达式
- 如何可视化计算图
- 如何自动计算梯度
- 如何将符号表达式编译为可执行函数
- 三种不同的参数优化方法
CGT的设计使得从简单的数学表达式到复杂的机器学习模型都能高效地实现和优化。其支持GPU加速的特性使其特别适合大规模机器学习任务。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C037
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0115
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
433
3.29 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
352
Ascend Extension for PyTorch
Python
237
271
暂无简介
Dart
690
162
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
仓颉编程语言运行时与标准库。
Cangjie
143
881
React Native鸿蒙化仓库
JavaScript
266
327
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
211
115
仓颉编译器源码及 cjdb 调试工具。
C++
138
869