Keras 3.10.0版本发布:新增权重分片与多项功能增强
Keras作为深度学习领域广受欢迎的高级神经网络API,在最新发布的3.10.0版本中带来了多项重要更新。本次更新不仅解决了大规模模型存储的痛点问题,还引入了新的优化器、损失函数、预处理层以及多项运算支持,进一步提升了框架的实用性和灵活性。
核心特性解析
权重分片存储功能
针对大型模型存储这一常见痛点,3.10.0版本新增了权重分片支持。通过model.save()
方法的max_shard_size
参数,开发者可以指定权重文件的最大分片大小,系统会自动将模型权重分割为不超过该大小的多个文件块。这一特性特别适合存储参数规模庞大的模型,有效解决了单一大文件带来的存储和传输问题。
加载分片存储的模型同样简单,只需使用常规的load_model()
函数即可自动重组所有分片。这一改进使得Keras在处理超大规模模型时更加游刃有余。
新增Muon优化器
本次更新引入了全新的Muon优化器,为模型训练提供了更多选择。Muon优化器在特定任务上可能展现出优于传统优化器的性能表现,开发者可以根据具体场景进行测试和选用。
图像处理增强
新增的RandomElasticTransform
预处理层为图像数据增强提供了新工具。该层能够对输入图像施加随机弹性变换,模拟真实世界中的形变效果,有助于提升模型的泛化能力。同时新增的elastic_transform
操作也为开发者提供了更底层的弹性变换控制能力。
损失函数与激活函数扩展
3.10.0版本丰富了损失函数体系,新增了CategoricalGeneralizedCrossEntropy
及其函数式版本。这一损失函数为分类任务提供了更多选择,特别适合需要特殊处理类别不平衡的场景。
同时,SparseCategoricalCrossentropy
损失函数新增了axis
参数,提供了更灵活的计算维度控制。新增的sparse_sigmoid
激活函数则为特定网络结构设计提供了更多可能。
LoRA技术增强
低秩适应(LoRA)技术在3.10.0版本中得到了增强,所有支持LoRA的层都新增了lora_alpha
参数。该参数用于缩放前向传播过程中的低秩适应增量,为模型微调提供了更精细的控制手段。
运算能力扩展
本次更新增加了多项数学运算支持,包括:
- 复数处理:
angle
、view_as_complex
、view_as_real
- 窗函数:
bartlett
、blackman
、hamming
这些新运算为信号处理、频域分析等专业领域提供了更好的支持。
后端优化
PyTorch后端改进
新增了cuDNN对LSTM的支持,显著提升了在PyTorch后端上运行LSTM模型的效率。
TensorFlow后端增强
- 支持
tf.RaggedTensor
作为Embedding
层的输入 - 新增变量级别的
synchronization
参数支持
OpenVINO推理后端
OpenVINO推理后端新增了对50多个Keras运算的支持,大大扩展了在该后端上可运行的模型范围。
总结
Keras 3.10.0版本通过权重分片存储、新增优化器与损失函数、扩展运算能力等多方面改进,进一步巩固了其作为深度学习首选框架的地位。特别是权重分片功能的加入,解决了大型模型存储的实际问题;而各项新特性和后端优化则为不同应用场景提供了更多可能。这些更新使得Keras在保持易用性的同时,能够更好地满足专业开发者和研究人员的需求。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~059CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









