Keras 3.10.0版本发布:新增权重分片与多项功能增强
Keras作为深度学习领域广受欢迎的高级神经网络API,在最新发布的3.10.0版本中带来了多项重要更新。本次更新不仅解决了大规模模型存储的痛点问题,还引入了新的优化器、损失函数、预处理层以及多项运算支持,进一步提升了框架的实用性和灵活性。
核心特性解析
权重分片存储功能
针对大型模型存储这一常见痛点,3.10.0版本新增了权重分片支持。通过model.save()方法的max_shard_size参数,开发者可以指定权重文件的最大分片大小,系统会自动将模型权重分割为不超过该大小的多个文件块。这一特性特别适合存储参数规模庞大的模型,有效解决了单一大文件带来的存储和传输问题。
加载分片存储的模型同样简单,只需使用常规的load_model()函数即可自动重组所有分片。这一改进使得Keras在处理超大规模模型时更加游刃有余。
新增Muon优化器
本次更新引入了全新的Muon优化器,为模型训练提供了更多选择。Muon优化器在特定任务上可能展现出优于传统优化器的性能表现,开发者可以根据具体场景进行测试和选用。
图像处理增强
新增的RandomElasticTransform预处理层为图像数据增强提供了新工具。该层能够对输入图像施加随机弹性变换,模拟真实世界中的形变效果,有助于提升模型的泛化能力。同时新增的elastic_transform操作也为开发者提供了更底层的弹性变换控制能力。
损失函数与激活函数扩展
3.10.0版本丰富了损失函数体系,新增了CategoricalGeneralizedCrossEntropy及其函数式版本。这一损失函数为分类任务提供了更多选择,特别适合需要特殊处理类别不平衡的场景。
同时,SparseCategoricalCrossentropy损失函数新增了axis参数,提供了更灵活的计算维度控制。新增的sparse_sigmoid激活函数则为特定网络结构设计提供了更多可能。
LoRA技术增强
低秩适应(LoRA)技术在3.10.0版本中得到了增强,所有支持LoRA的层都新增了lora_alpha参数。该参数用于缩放前向传播过程中的低秩适应增量,为模型微调提供了更精细的控制手段。
运算能力扩展
本次更新增加了多项数学运算支持,包括:
- 复数处理:
angle、view_as_complex、view_as_real - 窗函数:
bartlett、blackman、hamming
这些新运算为信号处理、频域分析等专业领域提供了更好的支持。
后端优化
PyTorch后端改进
新增了cuDNN对LSTM的支持,显著提升了在PyTorch后端上运行LSTM模型的效率。
TensorFlow后端增强
- 支持
tf.RaggedTensor作为Embedding层的输入 - 新增变量级别的
synchronization参数支持
OpenVINO推理后端
OpenVINO推理后端新增了对50多个Keras运算的支持,大大扩展了在该后端上可运行的模型范围。
总结
Keras 3.10.0版本通过权重分片存储、新增优化器与损失函数、扩展运算能力等多方面改进,进一步巩固了其作为深度学习首选框架的地位。特别是权重分片功能的加入,解决了大型模型存储的实际问题;而各项新特性和后端优化则为不同应用场景提供了更多可能。这些更新使得Keras在保持易用性的同时,能够更好地满足专业开发者和研究人员的需求。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00