BlackSheep框架v2.3.1版本发布:全面支持PyPy与性能优化
BlackSheep是一个高性能的Python异步Web框架,专注于提供简洁的API和卓越的性能表现。作为Neoteroi团队开发的开源项目,它采用了类似Flask的简单设计理念,同时基于ASGI标准构建,能够充分发挥异步编程的优势。
本次发布的v2.3.1版本带来了几项重要改进,最显著的是对PyPy解释器的全面支持,以及针对性能问题的修复。这些变化使得BlackSheep框架在更广泛的Python环境中具备了更好的适用性。
PyPy支持与架构调整
新版本最大的亮点是增加了对PyPy解释器的支持。PyPy作为Python的替代实现,以其Just-in-Time(JIT)编译技术著称,能够在某些场景下显著提升Python代码的执行效率。为了实现这一目标,开发团队进行了以下架构调整:
-
移除对httptools的强依赖:原本作为核心依赖的httptools库现在变为可选组件,框架提供了纯Python的备选实现路径。
-
URL解析模块重构:重写了url.pyx模块,使其不再依赖httptools,转而使用内置的解析逻辑,保证了在PyPy环境下的兼容性。
-
HTTP客户端改进:客户端实现现在支持两种解析引擎选择 - 既可以使用原有的httptools,也可以选择h11库作为替代方案。
这些改动虽然带来了一个小的兼容性变化(客户端现在需要显式安装httptools或h11),但大大增强了框架的灵活性,使得开发者可以根据实际运行环境选择最适合的组件组合。
性能优化与问题修复
v2.3.1版本还解决了几个重要的性能问题:
-
修复Pydantic性能回归:在2.3.0版本中引入的对Pydantic v1 validate_arguments装饰器的支持意外导致了性能下降。新版本移除了这一支持,专注于Pydantic v2的validate_call装饰器,后者本身就支持异步操作且不需要特殊处理。
-
纯Python轮分发:现在发布的包中包含纯Python轮(wheel),确保在各种环境下的兼容性,特别是在PyPy 3.11上的良好运行。
技术影响与开发者建议
对于现有项目升级到v2.3.1版本,开发者需要注意以下几点:
-
如果项目中使用的是BlackSheep的HTTP客户端功能,需要确保环境中安装了httptools或h11库。
-
使用Pydantic进行数据验证的项目,如果还在使用v1版本的validate_arguments,需要考虑迁移到v2的validate_call。
-
对于追求极致性能的场景,可以考虑在PyPy环境下运行应用,特别是在I/O密集型的Web服务中,PyPy的JIT优化可能会带来显著的性能提升。
这一版本的发布标志着BlackSheep框架在兼容性和性能优化方面又迈出了重要一步,为开发者提供了更多选择和更稳定的基础。无论是传统的CPython环境还是PyPy,现在都能充分发挥BlackSheep的优势,构建高性能的Web应用和服务。
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0365Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++091AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









