DeepEval v2.5.9发布:自定义评估指标模板与稳定性增强
项目简介
DeepEval是一个专注于大语言模型(LLM)评估的开源框架,它提供了一套完整的工具链用于测试和验证AI模型的表现。该项目特别适合需要评估RAG(检索增强生成)系统、对话模型以及其他基于LLM的应用场景的开发者和研究人员。
核心更新内容
自定义评估指标模板
本次版本最重要的更新是引入了对RAG评估指标模板的自定义功能。在之前的版本中,DeepEval主要围绕OpenAI的提示格式设计评估指标,这在某些场景下存在局限性:
- 模型兼容性:当用户使用性能较弱或与OpenAI格式不兼容的模型时,原有的固定模板可能导致评估结果不准确
- 灵活性不足:不同应用场景可能需要特定的评估方式和提示结构
新版本允许用户覆盖默认的提示模板,同时保留原有的评估算法和逻辑。例如,在使用Answer Relevancy(答案相关性)指标时,开发者可以这样自定义模板:
from deepeval.metrics.answer_relevancy import AnswerRelevancyMetric
custom_template = """
请根据以下问题评估答案的相关性:
问题: {question}
答案: {answer}
评估标准:
1. 答案是否直接解决了问题
2. 答案是否包含无关信息
3. 答案的完整程度
请给出1-5分的评分,并简要说明理由:
"""
metric = AnswerRelevancyMetric(
threshold=0.5,
model="gpt-3.5-turbo",
include_reason=True,
prompt_template=custom_template
)
这一改进使得DeepEval能够更好地适应各种LLM评估场景,特别是当用户使用非OpenAI系列模型时。
模型提供者稳定性增强
新版本对模型提供者接口进行了多项改进:
- 增强了错误处理和重试机制
- 优化了API调用效率
- 改进了对不同模型API的兼容性
这些改进使得DeepEval在与各种模型服务集成时更加稳定可靠,减少了因网络波动或API限制导致的评估中断问题。
数据集功能扩展
数据集功能新增了save_as()方法,现在可以同时保存测试用例。这一改进使得数据管理工作更加便捷:
dataset.save_as("my_dataset.json", include_test_cases=True)
DAGMetric提示模板优化
DAG(有向无环图)评估指标的提示模板得到了改进,使其更加清晰和有效。DAGMetric用于评估模型在复杂逻辑推理和多步问题解决中的表现,新模板能够更好地引导模型进行准确的自我评估。
技术意义与应用价值
DeepEval v2.5.9的这些更新从多个维度提升了框架的实用性和灵活性:
- 评估准确性提升:自定义模板功能允许用户根据特定模型和场景优化评估过程,减少因提示格式不匹配导致的评估偏差
- 适用范围扩大:不再局限于OpenAI风格的提示格式,可以更好地支持各种开源和商业模型
- 开发效率提高:增强的稳定性和数据集管理功能减少了开发者在基础设施上的投入,使其更专注于核心评估逻辑
对于正在构建或优化LLM应用的团队来说,这些改进意味着可以更准确、更灵活地评估模型表现,从而更快地迭代和改进产品。
结语
DeepEval v2.5.9通过引入自定义评估模板和多项稳定性改进,进一步巩固了其作为LLM评估领域重要工具的地位。这些更新特别适合那些需要在多样化环境中评估模型表现的开发者,无论是使用不同的模型提供商,还是面对特殊的评估需求。随着LLM应用的不断普及和复杂化,像DeepEval这样灵活且强大的评估工具将变得越来越重要。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00