Qwen2.5-VL项目DPO微调中的Tokenizer问题解析与解决方案
在使用Qwen2.5-VL项目进行DPO(Direct Preference Optimization)微调时,开发者可能会遇到一个典型的技术问题:当尝试使用trl库的DPOTrainer时,系统会抛出"Qwen2TokenizerFast has no attribute tokenizer"的错误。这个问题看似简单,但实际上涉及到多模态模型处理中的一些关键技术细节。
问题背景
Qwen2.5-VL是一个强大的多模态大语言模型,支持视觉和语言任务。在进行DPO微调时,标准的做法是使用trl库提供的DPOTrainer。然而,由于Qwen2.5-VL的特殊架构,直接使用AutoTokenizer获取的tokenizer对象与DPOTrainer的预期不完全匹配。
错误原因分析
这个问题的根源在于Qwen2.5-VL作为多模态模型,其处理器(Processor)和分词器(Tokenizer)的关系处理。当使用AutoProcessor获取处理器后,直接将其tokenizer属性传递给DPOTrainer时,DPOTrainer内部会错误地认为这是一个视觉模型处理器,进而尝试访问tokenizer.tokenizer属性,而实际上Qwen2TokenizerFast并没有这个嵌套结构。
解决方案
解决这个问题的关键在于正确处理tokenizer的传递方式。以下是两种可行的解决方案:
-
直接使用AutoTokenizer: 避免使用AutoProcessor,直接使用AutoTokenizer来获取分词器对象:
tokenizer = AutoTokenizer.from_pretrained("model_card/Qwen2.5-VL-7B-Instruct") -
调整模型处理器处理方式: 如果确实需要使用处理器,可以修改模型的处理方式:
processor = AutoProcessor.from_pretrained('model_card/Qwen2.5-VL-7B-Instruct') tokenizer = processor.tokenizer # 然后确保DPOTrainer正确识别这不是视觉模型
技术要点
-
多模态模型特殊性:Qwen2.5-VL这类多模态模型同时处理视觉和文本输入,其处理器结构比纯文本模型更复杂。
-
trl库的假设:DPOTrainer内部对视觉模型有特殊处理逻辑,会假设处理器有tokenizer.tokenizer这样的嵌套结构。
-
版本兼容性:不同版本的transformers库可能对此问题的处理方式略有不同,建议使用较新的稳定版本。
最佳实践建议
-
对于纯文本微调任务,优先使用AutoTokenizer而非AutoProcessor。
-
如果必须使用多模态功能,需要自定义DPOTrainer的部分逻辑以适应模型结构。
-
在微调前,先单独测试tokenizer的基本功能是否正常。
-
关注官方文档和社区更新,这类问题通常会随着库的更新而得到改进。
通过理解这些技术细节,开发者可以更顺利地使用Qwen2.5-VL进行DPO微调,充分发挥这一强大模型的潜力。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
yuanrongopenYuanrong runtime:openYuanrong 多语言运行时提供函数分布式编程,支持 Python、Java、C++ 语言,实现类单机编程高性能分布式运行。Go051
pc-uishopTNT开源商城系统使用java语言开发,基于SpringBoot架构体系构建的一套b2b2c商城,商城是满足集平台自营和多商户入驻于一体的多商户运营服务系统。包含PC 端、手机端(H5\APP\小程序),系统架构以及实现案例中应满足和未来可能出现的业务系统进行对接。Vue00
ebook-to-mindmapepub、pdf 拆书 AI 总结TSX01