PCAPdroid项目中HashSet优化为ArraySet的技术实践
2025-06-28 00:14:44作者:瞿蔚英Wynne
在Android应用开发中,内存优化是一个永恒的话题。PCAPdroid项目近期对其代码中的HashSet使用进行了优化,将其替换为更高效的ArraySet结构。这一技术改进虽然看似微小,但对于提升应用性能,特别是针对小型集合操作的场景,有着显著的意义。
HashSet与ArraySet的性能对比
HashSet作为Java集合框架中的经典实现,基于哈希表构建,提供了O(1)时间复杂度的查找性能。然而,这种高效是有代价的——每个HashSet实例都需要维护一个哈希表结构,这在处理小型集合时会造成不必要的内存开销。
ArraySet是Android框架中提供的一个优化集合实现,专门为小型数据集设计。它内部使用两个数组来存储元素:一个用于哈希码,一个用于元素值。这种设计在元素数量较少时(通常小于1000个)比HashSet更加节省内存,同时保持了良好的查找性能。
PCAPdroid的具体优化场景
在PCAPdroid项目中,有几个典型场景特别适合使用ArraySet替代HashSet:
- 网络豁免应用列表:处理网络豁免应用列表,通常只包含少量应用
- AppsTogglesAdapter:管理应用开关状态,集合规模通常不大
这些场景的共同特点是集合元素数量较少,且频繁进行创建和销毁操作。使用HashSet会导致不必要的内存分配和GC压力,而ArraySet则能更好地适应这些场景。
兼容性处理方案
由于ArraySet在API 21(Android 5.0)以下版本不可用,PCAPdroid项目采用了包装类的设计模式来解决兼容性问题。具体实现思路是:
- 创建一个自定义集合类,内部根据API版本决定使用ArraySet还是回退到HashSet
- 对外提供与标准Set接口一致的API,保证代码其他部分无需修改
- 在构建时通过条件判断选择合适的实现
这种设计既保证了新设备上的性能优化,又维持了旧设备的兼容性,体现了良好的工程实践。
性能优化效果
通过这一优化,PCAPdroid在以下几个方面获得了提升:
- 内存占用降低:ArraySet的内存开销比HashSet小30%-50%,对于小型集合尤其明显
- GC压力减小:减少了不必要的对象分配,降低了垃圾回收频率
- 局部性提升:数组结构比哈希表具有更好的缓存局部性,提高了访问速度
最佳实践建议
基于PCAPdroid的这一优化经验,我们可以总结出以下最佳实践:
- 对于已知的小型集合(元素数量<1000),优先考虑使用ArraySet
- 在需要支持低版本Android时,采用兼容性包装模式
- 对于频繁创建和销毁的临时集合,ArraySet是更好的选择
- 在性能敏感路径上,应该进行实际测量,而不仅仅是理论分析
这一优化案例展示了Android开发中"小改动,大收益"的典型范例,提醒开发者即使在看似微小的数据结构选择上,也可能隐藏着显著的性能优化空间。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Prover-X1-7BSpark-Prover 是由科大讯飞团队开发的专用大型语言模型,专为 Lean4 中的自动定理证明而设计。该模型采用创新的三阶段训练策略,显著增强了形式化推理能力,在同等规模的开源模型中实现了最先进的性能。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
317
2.74 K
仓颉编译器源码及 cjdb 调试工具。
C++
124
852
Ascend Extension for PyTorch
Python
157
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
639
246
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
242
85
暂无简介
Dart
606
136
React Native鸿蒙化仓库
JavaScript
239
310
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
470
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
364
3.02 K