FATE 1.10.0版本对OSX的支持解析
背景介绍
FATE(Federated AI Technology Enabler)作为联邦学习领域的开源框架,其1.10.0版本在跨平台支持方面有了重要进展。本文将深入解析该版本对OSX(Open-Source Exchange)协议的支持情况,帮助开发者更好地理解和使用这一功能。
OSX支持概述
FATE 1.10.0版本正式引入了对OSX协议的支持,这一特性在后续的FATE 2.1版本中被进一步明确标注为"兼容eggroll-v2.x"。这意味着开发者可以在基于eggroll 2.x版本的FATE环境中使用OSX协议进行组件间通信。
配置方法详解
要在FATE 1.10.0中使用OSX,需要进行以下配置调整:
-
服务切换:首先需要停止原有的fate-rollsite服务,转而启动OSX服务。这种服务切换确保了通信协议的一致性。
-
关键配置文件修改:在osx/conf/broker/broker.properties文件中,需要设置以下参数:
- grpc.port=9370(指定gRPC服务端口)
- self.party=9999(设置当前参与方的ID)
- eggroll.cluster.manager.ip=192.168.0.1(集群管理节点IP)
- eggroll.cluster.manager.port=4670(集群管理节点端口)
- eggroll.version=2.5.x(指定兼容的eggroll版本)
-
路由表配置:OSX的路由表配置与传统方式类似,但需要特别注意最后必须包含self_party字段,用于标识当前参与方。
技术实现要点
OSX在FATE中的实现基于以下技术要点:
-
gRPC通信:使用9370端口作为默认通信端口,提供了高效的跨语言服务调用能力。
-
版本兼容性:明确指定与eggroll 2.5.x版本的兼容性,确保了系统组件的协同工作。
-
身份标识:通过self.party参数明确参与方身份,这是联邦学习多参与方协作的基础。
实际应用建议
对于计划使用OSX的开发者,建议:
-
在测试环境充分验证OSX服务的稳定性后再部署到生产环境。
-
注意监控gRPC端口的通信状况,确保数据传输的可靠性。
-
路由表配置完成后,建议进行连通性测试,验证各参与方间的通信是否正常。
-
对于大规模部署,可以考虑对OSX服务进行性能调优,如调整gRPC的线程池大小等参数。
总结
FATE 1.10.0对OSX的支持为开发者提供了更灵活的通信协议选择,通过合理的配置和优化,可以构建更加稳定高效的联邦学习系统。理解这些技术细节将帮助开发者更好地利用FATE框架构建联邦学习解决方案。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00