FATE 1.10.0版本对OSX的支持解析
背景介绍
FATE(Federated AI Technology Enabler)作为联邦学习领域的开源框架,其1.10.0版本在跨平台支持方面有了重要进展。本文将深入解析该版本对OSX(Open-Source Exchange)协议的支持情况,帮助开发者更好地理解和使用这一功能。
OSX支持概述
FATE 1.10.0版本正式引入了对OSX协议的支持,这一特性在后续的FATE 2.1版本中被进一步明确标注为"兼容eggroll-v2.x"。这意味着开发者可以在基于eggroll 2.x版本的FATE环境中使用OSX协议进行组件间通信。
配置方法详解
要在FATE 1.10.0中使用OSX,需要进行以下配置调整:
-
服务切换:首先需要停止原有的fate-rollsite服务,转而启动OSX服务。这种服务切换确保了通信协议的一致性。
-
关键配置文件修改:在osx/conf/broker/broker.properties文件中,需要设置以下参数:
- grpc.port=9370(指定gRPC服务端口)
- self.party=9999(设置当前参与方的ID)
- eggroll.cluster.manager.ip=192.168.0.1(集群管理节点IP)
- eggroll.cluster.manager.port=4670(集群管理节点端口)
- eggroll.version=2.5.x(指定兼容的eggroll版本)
-
路由表配置:OSX的路由表配置与传统方式类似,但需要特别注意最后必须包含self_party字段,用于标识当前参与方。
技术实现要点
OSX在FATE中的实现基于以下技术要点:
-
gRPC通信:使用9370端口作为默认通信端口,提供了高效的跨语言服务调用能力。
-
版本兼容性:明确指定与eggroll 2.5.x版本的兼容性,确保了系统组件的协同工作。
-
身份标识:通过self.party参数明确参与方身份,这是联邦学习多参与方协作的基础。
实际应用建议
对于计划使用OSX的开发者,建议:
-
在测试环境充分验证OSX服务的稳定性后再部署到生产环境。
-
注意监控gRPC端口的通信状况,确保数据传输的可靠性。
-
路由表配置完成后,建议进行连通性测试,验证各参与方间的通信是否正常。
-
对于大规模部署,可以考虑对OSX服务进行性能调优,如调整gRPC的线程池大小等参数。
总结
FATE 1.10.0对OSX的支持为开发者提供了更灵活的通信协议选择,通过合理的配置和优化,可以构建更加稳定高效的联邦学习系统。理解这些技术细节将帮助开发者更好地利用FATE框架构建联邦学习解决方案。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~046CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0301- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









