Psycopg2与NumPy 2.0类型适配问题解析
在数据库编程中,Python的Psycopg2库与PostgreSQL的交互是一个常见场景。近期随着NumPy 2.0的发布,一些原本在NumPy 1.x版本下正常工作的Psycopg2代码出现了异常行为,这值得开发者关注。
问题现象
在NumPy 1.26版本中,以下代码可以正常工作:
cursor.execute(
"INSERT INTO test_np (val) VALUES (%(val)s);",
{"val": np.float64(1.0)},
)
但在升级到NumPy 2.0.1后,这段代码会抛出psycopg2.errors.InvalidSchemaName异常,提示"schema 'np' does not exist",这个错误信息相当晦涩难懂。
更有趣的是,如果将类型改为np.float32,则会得到另一个更明确的异常信息psycopg2.ProgrammingError: can't adapt type 'numpy.float32'。
问题根源
深入分析这个问题,主要有两个技术原因:
-
类型表示变化:NumPy 2.0改变了这些类型的
repr()方法输出格式。在1.x版本中,np.float64的表示与Python原生float兼容,而在2.0中则包含了模块名前缀。 -
继承关系变化:NumPy 2.0中
float32类型不再继承自Python的float基类,导致Psycopg2无法自动识别和适配。
值得注意的是,在Psycopg2中,NumPy 1.x的支持实际上是"意外"工作的,并非官方有意为之的兼容性设计。它之所以能工作,完全是因为这些NumPy类型在表示方式和继承关系上恰好与Python原生类型兼容。
解决方案
正确的解决方式是显式注册类型适配器:
from psycopg2.extensions import register_adapter, AsIs
def adapt_numpy_float(numpy_float):
return AsIs(str(numpy_float)) # 显式转换为字符串更安全
register_adapter(np.float32, adapt_numpy_float)
register_adapter(np.float64, adapt_numpy_float)
这种方案不仅解决了当前问题,而且更加健壮可靠。使用str(numpy_float)而不仅仅是AsIs(numpy_float)可以确保类型表示的一致性。
版本兼容性建议
对于正在使用或计划升级到NumPy 2.0的项目,有以下建议:
-
Psycopg2用户:应当为所有NumPy标量类型显式注册适配器,不要依赖"偶然"的兼容性。
-
考虑升级到Psycopg3:Psycopg 3.2版本已经官方支持NumPy标量类型,并且针对NumPy 2.0和更早版本都进行了测试,是更可靠的选择。
-
测试覆盖:在升级NumPy大版本时,应当全面测试所有数据库交互代码,特别是涉及数值类型处理的部分。
总结
这个问题很好地展示了底层库升级时可能带来的微妙兼容性问题。作为开发者,我们应当:
- 理解依赖库之间的隐式关系
- 不要依赖于"偶然"工作的实现细节
- 对于关键功能使用显式、官方支持的方式
- 保持依赖库版本的同步更新和测试
通过正确注册类型适配器,我们可以确保代码在NumPy 2.0环境下稳定工作,同时也为未来的升级维护打下良好基础。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00