Healpy 技术文档
1. 安装指南
Healpy 是一个用于处理球面上像素化数据的 Python 包,基于 HEALPix 方案。以下是安装 Healpy 的步骤:
1.1 使用 Pip 安装
最快捷的安装方式是使用 pip,它会自动获取 Healpy 的最新版本以及任何缺失的依赖项:
pip install --user healpy
安装完成后,您可以通过以下命令升级 Healpy:
pip install --user --upgrade healpy
1.2 依赖项
Healpy 依赖于以下库:
- Python 3.10、3.11 或 3.12
- Numpy(版本 >=1.19)
- Matplotlib
- Astropy
此外,某些 Linux 发行版可能需要安装 Python 开发包(例如 Ubuntu 的 python-dev 包)。
1.3 可选依赖项
Healpy 依赖于 HEALPix C++ 和 cfitsio C 库。虽然 Healpy 包含了这些库的源代码,但如果您已经安装了这些库,Healpy 会检测并重用它们。要使用您自己的 HEALPix 和 cfitsio 安装,您还需要:
- pkg-config
- HEALPix C++ 包(autotools 风格)
- cfitsio
2. 项目的使用说明
Healpy 提供了多种功能来处理球面上的像素化数据,包括:
- 在 HEALPix 嵌套和环形方案之间转换天空坐标和像素索引
- 查找天空中的磁盘、多边形或条带内的像素
- 在银河、黄道和赤道参考系之间应用坐标变换
- 应用自定义旋转(向量或完整地图)
- 以 FITS 格式读写 HEALPix 地图
- 升级或降级现有 HEALPix 地图的分辨率
- 在 Mollweide、Gnomonic 和 Cartographic 投影中可视化地图
- 使用多线程 C++ 例程将地图转换为球谐空间并返回
- 从地图计算自功率谱和交叉功率谱,并从谱生成地图实现
3. 项目 API 使用文档
Healpy 提供了丰富的 API 接口,以下是一些常用功能的示例:
3.1 坐标转换
import healpy as hp
# 将角度转换为像素索引
nside = 256
theta = 1.5 # 弧度
phi = 0.5 # 弧度
pixel = hp.ang2pix(nside, theta, phi)
print(f"像素索引: {pixel}")
3.2 地图可视化
import healpy as hp
import matplotlib.pyplot as plt
# 生成一个随机地图
nside = 64
m = hp.synfast(np.random.randn(hp.nside2npix(nside)), nside)
# 使用 Mollweide 投影可视化地图
hp.mollview(m, title="随机地图")
plt.show()
3.3 功率谱计算
import healpy as hp
import numpy as np
# 生成两个随机地图
nside = 64
m1 = hp.synfast(np.random.randn(hp.nside2npix(nside)), nside)
m2 = hp.synfast(np.random.randn(hp.nside2npix(nside)), nside)
# 计算交叉功率谱
cl = hp.anafast(m1, m2)
print(f"交叉功率谱: {cl}")
4. 项目安装方式
4.1 使用 Conda 安装
如果您使用 Conda,可以通过以下命令安装 Healpy:
conda install -c conda-forge healpy
4.2 从源代码安装
如果您希望从源代码安装 Healpy,可以按照以下步骤操作:
-
克隆 Healpy 的 GitHub 仓库:
git clone https://github.com/healpy/healpy.git cd healpy -
安装依赖项:
pip install -r requirements.txt -
编译并安装 Healpy:
python setup.py install
4.3 已知问题
- OpenMP 支持:某些编译器不支持 OpenMP,可能导致构建失败。建议使用支持 OpenMP 的编译器(如 gcc/g++)。
- Windows 不支持:Healpy 目前不支持 Windows 平台。
- cfitsio 冲突:如果使用 HEASOFT 提供的 cfitsio 库,可能会导致编译冲突。
支持与贡献
如果您在使用 Healpy 时遇到问题,可以在 StackOverflow 上提问并标记 healpy 标签。如果您发现 Bug 或安装问题,请在 GitHub 上提交问题。
Healpy 的开发在 GitHub 上进行,欢迎贡献代码。您可以 fork 项目并提交 Pull Request。
开发者与致谢
Healpy 的核心开发者包括 Cyrille Rosset、Andrea Zonca、Martin Reinecke、Leo Singer 和 Daniel Lenz。完整的贡献者列表可以在 GitHub 上查看。
在使用 Healpy 时,请引用相关的 HEALPix 和 Healpy 论文,并在论文中致谢:“本文中的部分结果使用了 Healpy 和 HEALPix 包。”
以上是 Healpy 的技术文档,涵盖了安装指南、使用说明、API 文档以及安装方式。希望本文能帮助您更好地理解和使用 Healpy。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00