FlagEmbedding项目训练过程中目录非空错误的解决方案
问题背景
在使用FlagEmbedding项目进行模型微调训练时,部分用户可能会遇到一个典型的错误:"OSError: [Errno 39] Directory not empty"。这个错误通常发生在训练过程中尝试保存检查点(checkpoint)时,具体表现为系统无法将临时检查点目录重命名为目标检查点目录。
错误现象
错误日志显示,当训练进行到保存检查点步骤时(如第1000步),系统首先尝试将模型保存到临时目录(如'tmp-checkpoint-1000'),然后试图将其重命名为正式检查点目录(如'checkpoint-1000')。此时系统抛出错误,提示目标目录非空,导致训练过程中断。
根本原因分析
经过技术团队调查,这个问题主要与transformers库的版本兼容性有关。在transformers 4.36.0及相近版本中,检查点保存机制存在一个缺陷,导致在多进程环境下目录重命名操作可能出现竞争条件,最终引发"目录非空"的错误。
解决方案
针对这个问题,技术团队提供了明确的解决方案:
-
升级transformers库:将transformers升级到4.40.1或更高版本可以彻底解决此问题。新版本中已经修复了检查点保存机制的缺陷。
-
版本选择建议:虽然项目文档中提到新版本transformers可能存在微调问题,但实际测试表明4.40.1版本在此场景下表现稳定。如果遇到其他兼容性问题,可以考虑在4.33-4.36版本范围内选择,但需注意避开已知有问题的具体版本。
实施步骤
-
检查当前transformers版本:
pip show transformers -
升级transformers到推荐版本:
pip install transformers==4.40.1 -
重新启动训练任务,观察问题是否解决。
预防措施
为了避免类似问题再次发生,建议:
- 在开始训练前,确保所有依赖库的版本符合项目推荐要求
- 定期更新到稳定版本的依赖库
- 为训练任务配置独立的输出目录,避免目录冲突
- 监控训练日志,及时发现并处理保存检查点时出现的异常
总结
FlagEmbedding项目作为重要的嵌入模型工具,在使用过程中可能会遇到各种环境相关的问题。本文描述的目录非空错误是一个典型的版本兼容性问题,通过升级transformers库即可解决。技术团队建议用户保持依赖库的及时更新,以获得最佳的训练体验和稳定性。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C091
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00