Plotly.rs 教程: Rust 中的数据可视化之旅
项目介绍
Plotly.rs 是一个基于 Rust 的图形库,它利用了强大的 Plotly.js 引擎来创建交互式的图表和数据可视化作品。这个项目旨在为 Rust 开发者提供一个高效且直观的方式来生成高质量的图表,无论是用于网页应用还是其他需要可视化展示的场景。文档丰富,包括了一个详细的书籍、实例目录以及专门的 API 文档,确保开发者可以轻松上手。
项目快速启动
要开始使用 Plotly.rs,首先你需要在你的 Cargo.toml 文件中添加依赖:
[dependencies]
plotly = "0.10.0"
之后,你可以通过以下简单的示例来体验基本的图绘制功能:
use plotly::{Plot, Scatter};
fn main() {
let mut plot = Plot::new();
let trace = Scatter::new(vec![0, 1, 2], vec![2, 1, 0]);
plot.add_trace(trace);
// 快速查看图表(打开默认浏览器显示互动式图表)
plot.show();
// 或保存为 HTML 文件(默认使用 CDN 加载 Plotly.js)
plot.write_html("example.html");
}
如果想直接将 JavaScript 库嵌入到 HTML 文件中,可以启用 plotly_embed_js 特性,并调整代码以适应静态加载需求。
应用案例和最佳实践
创建交互式图表
为了生成可交互的图表并存储为 HTML 文件,可以采用如下方式:
plot.use_cdn_plotly(); // 或者不使用此行来内嵌 JavaScript 库
plot.write_html("interactive_example.html");
静态图像导出
使用 kaleido 特性来支持导出非交互式的图片文件,例如 PNG 格式:
// 在 Cargo.toml 添加 kaleido 特性
// [dependencies.plotly.features] kaleido = true
let mut plot = Plot::new();
// 添加轨迹等...
plot.write_image("static_plot.png", ImageFormat::PNG, 800, 600);
WebAssembly 环境下的使用
对于 WebAssembly (Wasm) 应用,激活 wasm 特性,并确保基础 HTML 包含 Plotly.js 库。然后,通过 Rust 与 JavaScript 的互操作来展示图表。
典型生态项目
虽然本项目主要是 Plotly.rs 的核心库,但它通常被集成到各种 Rust 前端框架的生态中,如 Yew 或 Seed,或者用于构建数据分析工具链的一部分。开发者可以探索 examples/ 目录找到结合不同技术栈的实战范例,这些例子展示了如何在特定的 Rust/Wasm 项目中有效地利用 Plotly.rs 进行数据可视化。
以上即是 Plotly.rs 的简要教程,涵盖了从安装到快速上手,再到一些进阶使用的步骤。通过这个教程,你应该能够开始利用 Plotly.rs 在你的 Rust 项目中创建出色的数据可视化效果。记得参考其官方文档和仓库中的最新信息,以获取更全面的指导和示例。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00