Great Expectations 1.2.4版本中Pandas数据验证的最佳实践
在Great Expectations 1.2.4版本中,数据验证的方式发生了重大变化,特别是在处理Pandas DataFrame时。本文将为开发者详细介绍新版本中的正确使用方法。
版本变化带来的重要更新
Great Expectations 1.2.4版本引入了一些重要的API变化,旨在简化工作流程。最显著的变化包括:
- 移除了对
RuntimeBatchRequest的直接支持 - 弃用了
get_validator方法 - 引入了更简洁的验证定义方式
正确的Pandas DataFrame验证方法
在新版本中,验证Pandas DataFrame的正确流程如下:
import great_expectations as gx
import pandas as pd
# 创建临时上下文
context = gx.get_context(mode="ephemeral")
# 配置数据源和资产
name = "main"
bd = (
context.data_sources.add_pandas(name)
.add_dataframe_asset(name)
.add_batch_definition_whole_dataframe(name)
)
# 创建期望套件
suite = context.suites.add(
gx.ExpectationSuite(
name,
expectations=[
gx.expectations.ExpectColumnDistinctValuesToBeInSet(
column="a",
value_set=[1, 2, 3]
),
gx.expectations.ExpectColumnMaxToBeBetween(
column="a",
min_value=1,
max_value=2
),
],
)
)
# 创建验证定义
vd = context.validation_definitions.add(
gx.ValidationDefinition(
name=name,
data=bd,
suite=suite
)
)
# 配置检查点
cp = context.checkpoints.add(
gx.Checkpoint(
name=name,
validation_definitions=[vd],
actions=[gx.checkpoint.actions.UpdateDataDocsAction(name=name)],
)
)
# 运行验证
cp.run(batch_parameters={"dataframe": pd.DataFrame({"a": [1, 2, 3]})})
# 查看数据文档
context.open_data_docs()
关键组件解析
-
上下文(Context): 使用
get_context方法创建,mode="ephemeral"表示临时上下文,不会持久化配置。 -
数据源配置: 通过
add_pandas方法添加Pandas数据源,然后定义数据资产和批处理定义。 -
期望套件(ExpectationSuite): 包含一组数据质量检查规则,如列值范围、唯一性等验证。
-
验证定义(ValidationDefinition): 将数据源和期望套件关联起来,形成可执行的验证任务。
-
检查点(Checkpoint): 封装验证逻辑,可以配置验证后的操作,如更新数据文档。
常见问题解决
开发者在使用过程中可能会遇到以下问题:
-
RuntimeBatchRequest错误: 新版本不再推荐使用
RuntimeBatchRequest,应该直接通过检查点运行验证。 -
get_validator弃用: 该方法已被标记为弃用,应该使用验证定义和检查点的组合来实现相同功能。
-
数据传递方式: 在运行检查点时,通过
batch_parameters参数传递DataFrame数据。
最佳实践建议
-
对于简单的验证场景,可以直接使用上述流程。
-
对于复杂项目,考虑将配置持久化,移除
mode="ephemeral"参数。 -
合理组织期望规则,可以按业务领域分组创建多个期望套件。
-
利用检查点的actions参数配置自动化操作,如发送通知或更新数据质量报告。
通过遵循这些最佳实践,开发者可以充分利用Great Expectations 1.2.4版本的新特性,构建高效可靠的数据质量验证流程。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00