Great Expectations 1.2.4版本中Pandas数据验证的最佳实践
在Great Expectations 1.2.4版本中,数据验证的方式发生了重大变化,特别是在处理Pandas DataFrame时。本文将为开发者详细介绍新版本中的正确使用方法。
版本变化带来的重要更新
Great Expectations 1.2.4版本引入了一些重要的API变化,旨在简化工作流程。最显著的变化包括:
- 移除了对
RuntimeBatchRequest
的直接支持 - 弃用了
get_validator
方法 - 引入了更简洁的验证定义方式
正确的Pandas DataFrame验证方法
在新版本中,验证Pandas DataFrame的正确流程如下:
import great_expectations as gx
import pandas as pd
# 创建临时上下文
context = gx.get_context(mode="ephemeral")
# 配置数据源和资产
name = "main"
bd = (
context.data_sources.add_pandas(name)
.add_dataframe_asset(name)
.add_batch_definition_whole_dataframe(name)
)
# 创建期望套件
suite = context.suites.add(
gx.ExpectationSuite(
name,
expectations=[
gx.expectations.ExpectColumnDistinctValuesToBeInSet(
column="a",
value_set=[1, 2, 3]
),
gx.expectations.ExpectColumnMaxToBeBetween(
column="a",
min_value=1,
max_value=2
),
],
)
)
# 创建验证定义
vd = context.validation_definitions.add(
gx.ValidationDefinition(
name=name,
data=bd,
suite=suite
)
)
# 配置检查点
cp = context.checkpoints.add(
gx.Checkpoint(
name=name,
validation_definitions=[vd],
actions=[gx.checkpoint.actions.UpdateDataDocsAction(name=name)],
)
)
# 运行验证
cp.run(batch_parameters={"dataframe": pd.DataFrame({"a": [1, 2, 3]})})
# 查看数据文档
context.open_data_docs()
关键组件解析
-
上下文(Context): 使用
get_context
方法创建,mode="ephemeral"
表示临时上下文,不会持久化配置。 -
数据源配置: 通过
add_pandas
方法添加Pandas数据源,然后定义数据资产和批处理定义。 -
期望套件(ExpectationSuite): 包含一组数据质量检查规则,如列值范围、唯一性等验证。
-
验证定义(ValidationDefinition): 将数据源和期望套件关联起来,形成可执行的验证任务。
-
检查点(Checkpoint): 封装验证逻辑,可以配置验证后的操作,如更新数据文档。
常见问题解决
开发者在使用过程中可能会遇到以下问题:
-
RuntimeBatchRequest错误: 新版本不再推荐使用
RuntimeBatchRequest
,应该直接通过检查点运行验证。 -
get_validator弃用: 该方法已被标记为弃用,应该使用验证定义和检查点的组合来实现相同功能。
-
数据传递方式: 在运行检查点时,通过
batch_parameters
参数传递DataFrame数据。
最佳实践建议
-
对于简单的验证场景,可以直接使用上述流程。
-
对于复杂项目,考虑将配置持久化,移除
mode="ephemeral"
参数。 -
合理组织期望规则,可以按业务领域分组创建多个期望套件。
-
利用检查点的actions参数配置自动化操作,如发送通知或更新数据质量报告。
通过遵循这些最佳实践,开发者可以充分利用Great Expectations 1.2.4版本的新特性,构建高效可靠的数据质量验证流程。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~052CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0308- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









