BlockNote项目中自定义行内组件导出值的实现方案
2025-05-29 17:21:07作者:庞眉杨Will
BlockNote
A "Notion-style" block-based extensible text editor built on top of Prosemirror and Tiptap.
在基于BlockNote编辑器进行二次开发时,开发者经常需要实现自定义的行内组件,并控制其导出格式。本文将以实现一个@mention功能为例,深入讲解如何通过createReactInlineContentSpec创建自定义组件,并实现渲染内容与导出内容的差异化处理。
核心需求分析
在实际业务场景中,我们通常需要:
- 在编辑器中显示友好的用户标识(如@username)
- 导出时转换为特定的数据格式(如)
- 保持编辑体验与数据存储的分离
技术实现详解
1. 创建自定义Mention组件
通过createReactInlineContentSpec定义组件规范:
const Mention = createReactInlineContentSpec({
type: "mention",
propSchema: {
path: { default: "No path" }, // 显示用名称
data: { default: "No data" } // 实际存储数据
},
content: "none"
}, {
render: ({ inlineContent }) => (
<span style={{ backgroundColor: "#8400ff33" }}>
@{inlineContent.props.path}
</span>
)
});
关键点说明:
- propSchema定义了两个属性:path用于显示,data用于存储
- content设置为"none"表示这是不可编辑的原子组件
- render方法控制可视化呈现,这里添加了背景色突出显示
2. 自定义Markdown导出逻辑
BlockNote默认的blocksToMarkdownLossy可能无法满足定制需求,需要手动实现转换:
const customExporter = (blocks) => blocks.reduce((acc, block) => {
let content = "";
// 处理标题块
if (block.type === "heading") {
content += "#".repeat(block.props.level) + " ";
}
// 处理行内内容
content += block.content?.reduce((str, inline) => {
if (inline.type === "text") return str + inline.text;
if (inline.type === "mention") return str + `<${inline.props.data}>`;
return str;
}, "") || "";
return acc + content + "\n\n";
}, "");
转换逻辑特点:
- 保持标题的Markdown语法(#号数量对应级别)
- 普通文本直接输出
- Mention组件转换为格式
- 添加适当的换行保证可读性
高级应用场景
双向转换处理
完整的解决方案还应考虑从Markdown导入时的逆向转换:
- 解析格式的标记
- 查询用户系统获取显示名称
- 重新构建为Mention组件
性能优化建议
对于大型文档:
- 使用memoization缓存转换结果
- 实现增量导出机制
- 考虑Web Worker处理耗时操作
总结
BlockNote的灵活架构允许开发者通过createReactInlineContentSpec深度定制行内组件。通过分离显示属性(path)和数据属性(data),我们可以实现编辑时友好显示与导出时规范格式的统一。自定义导出逻辑时需要注意保持Markdown的语法规范,同时确保特殊标记的可逆转换。
这种模式不仅适用于@mention功能,还可以扩展到各种需要特殊渲染和存储的业务场景,如商品链接、文档引用等复杂元素的处理。
BlockNote
A "Notion-style" block-based extensible text editor built on top of Prosemirror and Tiptap.
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0105
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
478
3.57 K
React Native鸿蒙化仓库
JavaScript
288
340
暂无简介
Dart
729
175
Ascend Extension for PyTorch
Python
288
321
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
850
448
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
242
105
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
453
181
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.28 K
705