Giskard项目:如何自定义LLM模型的偏见与歧视测试方案
2025-06-13 02:11:56作者:钟日瑜
在人工智能领域,大型语言模型(LLM)的偏见和歧视问题日益受到关注。Giskard作为一个开源测试框架,提供了强大的模型扫描功能,但很多企业用户在实际应用中需要更灵活的测试方案。本文将深入探讨如何在不依赖OpenAI的情况下,实现LLM模型的自动化测试。
核心测试架构解析
Giskard的测试流程本质上分为两个关键阶段:
- 测试数据生成阶段:创建用于测试模型的输入样本
- 结果评估阶段:对模型输出进行分析和判断
这种架构设计使得两个阶段可以完全解耦,为用户提供了高度灵活性。
五种典型测试场景实现
场景一:完全去OpenAI化测试
通过设置不同的LLM客户端,可以实现生成和评估阶段的完全独立:
from giskard.llm.client import set_default_client
# 使用自定义模型生成测试数据
set_default_client(custom_generation_client)
test_dataset = generate_test_dataset(model)
# 使用另一个自定义模型进行评估
set_default_client(custom_evaluation_client)
scan_results = scan(model, test_dataset)
场景二:预存测试用例方案
对于需要严格管控测试用例的企业,可以预先准备测试数据集:
import pandas as pd
from giskard import Dataset
# 从本地文件加载测试用例
test_cases = pd.read_csv("prepared_test_cases.csv")
giskard_dataset = Dataset(test_cases)
# 使用自定义评估模型
set_default_client(custom_evaluation_client)
scan(model, giskard_dataset)
场景三:混合评估方案
当仅需要使用OpenAI进行评估时:
# 使用自定义模型生成数据
set_default_client(custom_generation_client)
dataset = generate_test_dataset(model)
# 切换回OpenAI进行评估
set_default_client(openai_client)
scan(model, dataset)
高级应用技巧
- 测试套件缓存:首次扫描后生成的测试套件可以序列化保存,后续直接运行测试套件比全量扫描更高效
- 动态数据集更新:结合版本控制系统,可以实现测试用例的迭代更新
- 混合评估策略:对不同的测试维度采用不同的评估模型
安全注意事项
对于处理敏感数据的企业,建议:
- 测试数据生成阶段使用本地化部署的LLM
- 评估阶段可根据敏感程度选择云服务或本地模型
- 建立测试数据审核机制,避免敏感信息泄露
通过Giskard提供的灵活接口,企业可以根据自身的数据安全政策和测试需求,构建最适合的LLM测试流水线。这种模块化设计不仅满足了多样化的测试需求,也为持续改进测试方案提供了可能。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
523
3.71 K
Ascend Extension for PyTorch
Python
328
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
876
577
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
187
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
135