FindMy.py项目:如何检测特定AirTag是否在蓝牙扫描范围内
2025-07-04 06:16:07作者:管翌锬
背景介绍
FindMy.py是一个用于与苹果Find My网络交互的Python库。近期有开发者尝试使用该库来实现一个宠物追踪系统,希望通过AirTag的蓝牙信号来实时监测宠物是否在家。这一需求引发了对AirTag蓝牙广播机制和识别方法的深入探讨。
AirTag广播机制解析
AirTag作为苹果生态系统的智能追踪设备,其广播行为会根据环境自动调整:
- 远离所有者模式:当AirTag远离配对设备时,会广播完整的设备标识信息,包括可识别的公钥和MAC地址
- 近场模式:当AirTag检测到附近有配对设备时,仅发送极简的广播包,主要用于向所有者设备确认其存在
这种智能广播机制既是隐私保护措施,也是电池优化策略,但给第三方开发者带来了识别挑战。
技术实现方案
公钥匹配方法
开发者最初尝试通过公钥匹配来识别特定AirTag:
- 从Find My备份的plist文件中提取设备密钥信息
- 使用
keys_at
或keys_between
方法获取设备在特定时间段内的有效公钥 - 扫描蓝牙信号并与这些公钥进行比对
然而,这种方法在AirTag处于近场模式时失效,因为此时广播的简略信息不包含完整公钥。
MAC地址匹配方案
更深入的调查发现,即使AirTag处于近场模式,其MAC地址仍包含关键信息:
- AirTag的MAC地址最后5个字节与当前公钥的第2-6个字节相同
- 由于BLE规范要求,MAC地址首字节的最高两位必须为11,因此这两个位被放置在广播负载的第3个字节中
基于这一发现,开发者实现了以下检测逻辑:
def has_consecutive_five_byte_match(mac_bytes, adv_key_bytes):
"""检查MAC地址后5字节是否与公钥的2-6字节匹配"""
return mac_bytes[-5:] == adv_key_bytes[1:6]
实际应用与验证
通过修改FindMy.py的扫描逻辑,开发者成功实现了:
- 捕获所有BLE广播设备,包括处于近场模式的AirTag
- 提取设备的MAC地址并与已知AirTag的公钥进行部分匹配
- 准确识别特定AirTag是否在蓝牙覆盖范围内
测试数据显示匹配模式如下:
MAC地址: e5:29:d7:92:57:65
公钥字节: a5:29:d7:92:57:65:ac:2a...
证实了MAC地址后5字节与公钥2-6字节的对应关系。
技术展望
这一发现为FindMy.py项目带来了新的可能性:
- 实现更精确的AirTag存在性检测,不受工作模式限制
- 为宠物追踪、物品管理等应用提供可靠的技术基础
- 未来可扩展支持更多Find My网络设备的识别
该方案已作为功能请求提交,预计将在项目后续版本中实现官方支持。
总结
通过深入分析AirTag的广播机制和编码规则,开发者成功解决了在近场模式下识别特定AirTag的技术难题。这一方案不仅满足了宠物追踪的实时性需求,也为FindMy.py项目开辟了新的应用场景。随着项目的持续发展,这类边缘设备的识别技术将变得更加成熟可靠。
登录后查看全文
热门项目推荐
相关项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~052CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0324- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
178
263

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
868
514

openGauss kernel ~ openGauss is an open source relational database management system
C++
130
183

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
288
323

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
373

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
600
58

基于可以运行在OpenHarmony的git,提供git客户端操作能力
ArkTS
10
3