MemoryPack中处理动态类型序列化的实践方案
2025-06-19 02:26:11作者:董宙帆
背景介绍
MemoryPack作为C#生态中的高性能序列化库,在处理静态类型时表现出色。但在实际开发中,我们经常会遇到需要处理动态类型数据的场景,比如游戏开发中的快照系统、消息传递系统等。本文探讨如何在MemoryPack中优雅地处理这种动态类型序列化的需求。
问题核心
在游戏快照系统中,开发者希望定义一个包含动态类型数组的结构体。理想情况下,代码可能如下:
public partial class GameSnapshot : ICommand
{
public int Tick;
public IMemoryPackable[] Data; // 希望支持动态类型
}
然而,MemoryPack的IMemoryPackable<T>
是泛型接口,无法直接用于声明未知类型的数组。同时,使用Union方案会为每个数组元素增加额外的类型标记字节,这在处理大型数组时会带来显著的开销。
解决方案
二进制缓冲区方案
一种有效的解决方案是将动态数据作为二进制缓冲区处理,将类型信息与数据分离:
[MemoryPackable]
public partial class Message
{
public MessageType MessageType { get; set; }
public ReadOnlySequence<byte> Payload { get; set; }
}
这种方案的核心思想是:
- 使用枚举
MessageType
标识实际数据类型 - 将序列化后的二进制数据存储在
Payload
中 - 通过辅助类进行二次序列化/反序列化
编解码实现
解码过程通过类型标识进行分发处理:
internal static class MessageDecoder
{
public static MessageContent DecodeMessage(Message message)
{
return message.MessageType switch
{
MessageType.Chat => MemoryPackSerializer.Deserialize<ChatMessage>(message.Payload),
MessageType.Control => MemoryPackSerializer.Deserialize<ControlMessage>(message.Payload),
// 其他类型处理...
};
}
}
编码过程则根据实际类型进行序列化:
public static async Task<Message> EncodeMessage(MessageContent message)
{
ReadResult resultBuffer;
Pipe bufferPipe = new Pipe();
MessageType messageType = MessageType.Unknown;
switch (message)
{
case ChatMessage chatMessage:
MemoryPackSerializer.Serialize(bufferPipe.Writer, chatMessage);
messageType = MessageType.Chat;
break;
// 其他类型处理...
}
await bufferPipe.Writer.FlushAsync();
resultBuffer = await bufferPipe.Reader.ReadAsync();
return new Message() { MessageType = messageType, Payload = resultBuffer.Buffer };
}
方案优势
- 性能优化:避免了Union方案的类型标记开销,特别适合大型数组
- 类型安全:通过显式的类型标识确保反序列化的正确性
- 扩展性:易于添加新的支持类型,只需扩展编解码逻辑
- 内存效率:利用管道(Pipe)进行流式处理,减少内存分配
适用场景
这种方案特别适合以下场景:
- 高频更新的游戏状态快照
- 网络消息传递系统
- 需要支持多种数据类型的日志系统
- 任何需要处理大型动态类型集合的场合
总结
在MemoryPack中处理动态类型序列化时,采用类型标识+二进制缓冲区的方案是一种高效且灵活的解决方案。它既保持了MemoryPack的高性能特性,又提供了处理动态类型所需的灵活性。开发者可以根据实际需求调整编解码逻辑,构建适合自己应用场景的序列化方案。
登录后查看全文
热门项目推荐
Hunyuan3D-Part
腾讯混元3D-Part00Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0274community
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息011Hunyuan3D-2
Hunyuan3D 2.0:高分辨率三维生成系统,支持精准形状建模与生动纹理合成,简化资产再创作流程。Python00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
153
1.98 K

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
505
42

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

React Native鸿蒙化仓库
C++
194
279

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
992
395

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
938
554

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
333
11

openGauss kernel ~ openGauss is an open source relational database management system
C++
146
191

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Python
75
70