LightLLM v1.0.0 发布:跨进程请求优化与调度推理融合技术解析
2025-06-16 20:55:49作者:虞亚竹Luna
LightLLM 是一个高性能的深度学习推理框架,专注于大语言模型的高效部署与推理加速。该项目采用了创新的三进程架构设计,通过优化进程间通信和资源管理,显著提升了大规模语言模型推理的性能和效率。
跨进程请求对象优化
LightLLM v1.0.0 版本中最重要的改进之一是引入了跨进程请求对象的设计。在保持原有三进程架构的基础上,新版本实现了请求对象在不同进程间的共享访问能力。这一创新设计带来了显著的性能提升:
- 减少数据拷贝:传统的进程间通信需要频繁的数据序列化和反序列化操作,而跨进程请求对象避免了这一开销
- 降低延迟:请求状态可以直接在不同进程间共享,无需额外的通信协议
- 简化流程:开发者可以更自然地处理请求,无需关心进程边界带来的复杂性
调度与模型推理融合技术
新版本实现了调度器与模型推理过程的深度融合,这一技术突破带来了多方面的优势:
- 通信开销大幅降低:通过减少调度器与模型RPC之间的数据传递,系统整体吞吐量得到显著提升
- 资源利用率优化:融合后的架构能够更精细地控制计算资源分配
- 响应时间缩短:端到端延迟降低,特别适合实时推理场景
CacheTensorManager 创新设计
LightLLM v1.0.0 引入了全新的 CacheTensorManager 类,专门用于管理框架内 Torch 张量的分配和释放。这一创新设计解决了大规模模型推理中的关键挑战:
- 张量共享最大化:运行时智能识别并共享各层间的张量,减少内存重复占用
- CUDA 图内存优化:增强不同 CUDA 图之间的内存共享能力
- 大规模部署能力:在8卡80GB H100服务器上,使用DeepSeek-v2模型时,LightLLM可同时运行200个CUDA图而不会出现内存不足的情况
PD-Disaggregation 原型
新版本还包含了PD-Disaggregation(参数-计算分离)架构的原型实现,支持P节点和D节点的动态注册。这一设计为未来分布式推理提供了灵活的基础架构,能够根据负载动态调整计算资源。
性能基准测试
在H200硬件平台上,LightLLM展现了卓越的性能表现。测试使用100个客户端,输入长度为1024,输出长度遵循均值为128的高斯分布。与同类框架相比,LightLLM在DeepSeek-R1模型上的推理性能表现最优。
技术影响与展望
LightLLM v1.0.0的发布标志着大模型推理框架在性能和效率方面迈上了新台阶。其创新性的跨进程请求设计、调度推理融合技术以及先进的张量管理方案,为解决当前大模型部署中的内存和计算瓶颈提供了有效方案。
未来,随着PD-Disaggregation架构的进一步完善,LightLLM有望在分布式推理场景中展现出更大的潜力,为大规模语言模型的实际应用提供更强大的支持。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
25
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
415
3.19 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
680
160
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
Ascend Extension for PyTorch
Python
229
259
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
327
React Native鸿蒙化仓库
JavaScript
265
326
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660