LightLLM v1.0.0 发布:跨进程请求优化与调度推理融合技术解析
2025-06-16 18:43:42作者:虞亚竹Luna
LightLLM 是一个高性能的深度学习推理框架,专注于大语言模型的高效部署与推理加速。该项目采用了创新的三进程架构设计,通过优化进程间通信和资源管理,显著提升了大规模语言模型推理的性能和效率。
跨进程请求对象优化
LightLLM v1.0.0 版本中最重要的改进之一是引入了跨进程请求对象的设计。在保持原有三进程架构的基础上,新版本实现了请求对象在不同进程间的共享访问能力。这一创新设计带来了显著的性能提升:
- 减少数据拷贝:传统的进程间通信需要频繁的数据序列化和反序列化操作,而跨进程请求对象避免了这一开销
- 降低延迟:请求状态可以直接在不同进程间共享,无需额外的通信协议
- 简化流程:开发者可以更自然地处理请求,无需关心进程边界带来的复杂性
调度与模型推理融合技术
新版本实现了调度器与模型推理过程的深度融合,这一技术突破带来了多方面的优势:
- 通信开销大幅降低:通过减少调度器与模型RPC之间的数据传递,系统整体吞吐量得到显著提升
- 资源利用率优化:融合后的架构能够更精细地控制计算资源分配
- 响应时间缩短:端到端延迟降低,特别适合实时推理场景
CacheTensorManager 创新设计
LightLLM v1.0.0 引入了全新的 CacheTensorManager 类,专门用于管理框架内 Torch 张量的分配和释放。这一创新设计解决了大规模模型推理中的关键挑战:
- 张量共享最大化:运行时智能识别并共享各层间的张量,减少内存重复占用
- CUDA 图内存优化:增强不同 CUDA 图之间的内存共享能力
- 大规模部署能力:在8卡80GB H100服务器上,使用DeepSeek-v2模型时,LightLLM可同时运行200个CUDA图而不会出现内存不足的情况
PD-Disaggregation 原型
新版本还包含了PD-Disaggregation(参数-计算分离)架构的原型实现,支持P节点和D节点的动态注册。这一设计为未来分布式推理提供了灵活的基础架构,能够根据负载动态调整计算资源。
性能基准测试
在H200硬件平台上,LightLLM展现了卓越的性能表现。测试使用100个客户端,输入长度为1024,输出长度遵循均值为128的高斯分布。与同类框架相比,LightLLM在DeepSeek-R1模型上的推理性能表现最优。
技术影响与展望
LightLLM v1.0.0的发布标志着大模型推理框架在性能和效率方面迈上了新台阶。其创新性的跨进程请求设计、调度推理融合技术以及先进的张量管理方案,为解决当前大模型部署中的内存和计算瓶颈提供了有效方案。
未来,随着PD-Disaggregation架构的进一步完善,LightLLM有望在分布式推理场景中展现出更大的潜力,为大规模语言模型的实际应用提供更强大的支持。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C048
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
440
3.35 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
818
390
Ascend Extension for PyTorch
Python
248
285
React Native鸿蒙化仓库
JavaScript
275
329
暂无简介
Dart
701
164
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
135
48
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
677
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
554
110