QualityScaler项目自定义AI升频模型集成指南
2025-07-01 03:42:49作者:霍妲思
背景介绍
QualityScaler是一款基于AI技术的图像/视频质量提升工具,它通过神经网络模型对低分辨率内容进行智能升频处理。项目最初使用PyTorch的.pth模型文件,现已全面转向ONNX运行时环境,以提高跨平台兼容性和执行效率。
模型转换流程
要将自定义PyTorch模型集成到QualityScaler中,首先需要完成模型格式转换:
- 准备PyTorch模型:确保你的.pth模型文件完整且可运行
- 转换为ONNX格式:使用PyTorch的torch.onnx.export函数进行转换
- 优化ONNX模型:可使用onnxruntime的优化工具简化计算图
转换示例代码框架:
import torch
import torch.onnx
# 加载你的PyTorch模型
model = YourModelClass()
model.load_state_dict(torch.load("your_model.pth"))
model.eval()
# 创建虚拟输入
dummy_input = torch.randn(1, 3, 256, 256) # 根据你的模型调整尺寸
# 执行转换
torch.onnx.export(
model,
dummy_input,
"your_model.onnx",
opset_version=11, # 建议使用11或更高版本
input_names=["input"],
output_names=["output"],
dynamic_axes={
"input": {0: "batch_size", 2: "height", 3: "width"},
"output": {0: "batch_size", 2: "height", 3: "width"}
}
)
模型集成步骤
完成格式转换后,按照以下步骤将模型集成到QualityScaler中:
-
放置模型文件:
- 将生成的.onnx文件复制到项目目录下的
Ai-onnx文件夹中 - 确保文件命名清晰且不含特殊字符
- 将生成的.onnx文件复制到项目目录下的
-
修改源代码:
- 定位到项目中的
AI_models_list列表定义处 - 按照现有格式添加你的模型名称
- 示例修改:
AI_models_list = [ "existing_model_1", "existing_model_2", "your_custom_model" # 新增你的模型名称 ]
- 定位到项目中的
-
模型兼容性检查:
- 确保输入输出张量维度与项目预期一致
- 验证模型支持的色彩空间(通常为RGB)
- 检查模型是否支持动态输入尺寸(推荐)
技术注意事项
-
性能优化:
- 考虑使用ONNX Runtime的特定执行提供程序(如CUDA、TensorRT)
- 对于大模型,可尝试量化以降低内存占用
-
输入输出规范:
- 输入图像通常需要归一化到0-1或0-255范围
- 输出应与输入保持相同的色彩空间和数值范围
-
多尺度支持:
- 如果模型支持多尺度处理,需在代码中相应调整预处理逻辑
常见问题解决方案
-
转换失败:
- 检查PyTorch和ONNX版本兼容性
- 验证模型结构中是否包含ONNX不支持的操作
-
推理错误:
- 确保输入张量的形状和类型正确
- 检查模型是否成功加载到ONNX Runtime
-
性能问题:
- 尝试不同的ONNX Runtime优化级别
- 考虑使用模型分片处理大分辨率输入
进阶建议
对于希望深度定制QualityScaler的用户,还可以考虑:
- 实现自定义预处理/后处理管线
- 添加模型特定的参数调节选项
- 集成多个模型的级联处理
- 开发模型自动下载和更新机制
通过以上步骤,开发者可以灵活地将各种AI升频模型集成到QualityScaler框架中,扩展其应用场景和处理能力。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
操作系统概念第六版PDF资源全面指南:适用场景与使用教程 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案 高效验证码识别解决方案:OCRServer资源文件深度解析与应用指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
375
3.25 K
暂无简介
Dart
619
140
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
479
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
261
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.09 K
619
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
790
76