如何在本地部署Plausible社区版并追踪单页应用访问数据
前言
Plausible是一款轻量级的网站分析工具,其社区版(Plausible CE)允许用户自行部署。对于开发者而言,在正式上线前在本地环境测试其功能非常必要。本文将详细介绍如何在本地机器上通过Docker部署Plausible CE,并配置其追踪本地运行的React单页应用(SPA)的访问数据。
环境准备
在开始前,请确保您的系统已安装以下组件:
- Docker及Docker Compose
- Git
- OpenSSL(用于生成密钥)
部署步骤
1. 克隆项目代码
首先需要获取Plausible社区版的源代码。建议使用特定版本以确保稳定性:
git clone -b v2.1.3 --single-branch https://github.com/plausible/community-edition plausible-ce
cd plausible-ce
2. 配置环境变量
创建.env文件并设置必要的环境变量:
touch .env
echo "BASE_URL=http://localhost:8000" >> .env
echo "SECRET_KEY_BASE=$(openssl rand -base64 48)" >> .env
这里需要特别说明BASE_URL的配置:
- BASE_URL应设置为Plausible自身的访问地址
- 对于本地测试,使用http://localhost加端口号的形式
- 端口号8000是默认设置,可根据需要修改
3. 配置Docker端口映射
创建compose.override.yml文件来设置端口映射:
cat > compose.override.yml << EOF
services:
plausible:
ports:
- 8000:8000
EOF
4. 启动服务
使用Docker Compose启动所有服务:
docker compose up -d
配置单页应用追踪
1. 获取追踪代码
Plausible启动后,访问http://localhost:8000完成初始注册。在管理界面中,您可以获取用于追踪的JavaScript代码片段。
2. 集成到React应用
将获取的追踪代码添加到您的React单页应用中。对于使用Vite创建的React项目,可以在index.html或根组件中添加:
<script defer data-domain="localhost" src="http://localhost:8000/js/script.js"></script>
3. 特殊配置说明
对于本地开发环境,需要注意以下几点:
- 确保Plausible和您的应用使用不同的端口号
- 不需要配置HTTPS,直接使用HTTP协议
- 数据域(data-domain)可以设置为"localhost"或任何您喜欢的标识符
常见问题解决
1. 注册按钮无响应
如果遇到注册页面按钮无响应的情况,检查Docker日志中的错误信息。常见原因包括:
- 数据库初始化失败
- 端口冲突
- 环境变量配置错误
2. 数据不显示
如果追踪代码已添加但数据不显示:
- 确保Plausible服务正常运行
- 检查浏览器控制台是否有加载脚本的错误
- 确认没有广告拦截器阻止了追踪请求
进阶配置
1. 自定义端口
如果需要使用其他端口,修改compose.override.yml中的端口映射和.env中的BASE_URL即可。
2. 持久化数据
默认情况下,数据会随容器停止而消失。如需持久化,可以配置Docker卷来保存数据库数据。
结语
通过以上步骤,您已成功在本地部署了Plausible社区版,并配置其追踪本地开发的单页应用。这种配置非常适合开发阶段的测试和验证,待功能确认后再考虑生产环境部署。Plausible的轻量级特性使其成为替代Google Analytics的优秀选择,特别是在注重隐私保护的场景下。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00