time_series_augmentation 的安装和配置教程
2025-05-21 15:36:29作者:庞眉杨Will
1. 项目基础介绍和主要编程语言
time_series_augmentation 是一个开源项目,它收集了多种时间序列数据增强方法,并提供了一个使用 Keras 框架的示例。该项目主要针对时间序列数据的分类问题,通过数据增强技术提高神经网络模型的泛化能力。该项目的主要编程语言是 Python。
2. 项目使用的关键技术和框架
项目使用了以下关键技术和框架:
- 时间序列数据增强:通过时间扭曲、抖动等手段对时间序列数据进行增强,以提高模型的鲁棒性。
- Keras:一个高级神经网络API,旨在快速构建和迭代深度学习模型。
- TensorFlow:一个开源的软件库,用于数据流编程和不同类型的计算,是 Keras 的后端之一。
3. 项目安装和配置的准备工作及详细安装步骤
准备工作
在开始安装之前,请确保您的系统中已经安装了以下环境:
- Python 3.6.9
- TensorFlow 2.4.1
- Keras 2.2.4
此外,还需要安装以下依赖库:
- numpy 1.19.5
- matplotlib 2.2.2
- scikit-image 0.15.0
- tqdm
安装步骤
- 安装所需的 Python 库:
pip install tensorflow-gpu==2.4.1 keras==2.2.4 numpy==1.19.5 matplotlib==2.2.2 scikit-image==0.15.0 tqdm
- 克隆项目到本地:
git clone https://github.com/uchidalab/time_series_augmentation.git
cd time_series_augmentation
- 如果您希望使用 Docker 环境,可以构建 Docker 镜像并运行:
cd docker
sudo docker build -t tsa .
docker run --runtime nvidia -rm -it -p 127.0.0.1:8888:8888 -v `pwd`:/work -w /work tsa jupyter notebook --allow-root
注意:较新版本的 Docker 可能需要使用 --gpus all 替代 --runtime nvidia。
-
下载 UCR 时间序列档案 2018 数据集,并解压到项目中的
data文件夹。 -
使用项目提供的脚本训练模型,例如,要在 Jittering 增强下训练一个 VGG 模型:
python3 main.py --gpus=0 --dataset=CBF --preset_files --ucr2018 --normalize_input --train --save --jitter --augmentation_ratio=4 --model=vgg
请根据需要调整参数以适应不同的训练需求。
完成以上步骤后,您就可以开始使用 time_series_augmentation 项目进行时间序列数据的增强和模型训练了。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C081
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 STM32到GD32项目移植完全指南:从兼容性到实战技巧 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
466
3.47 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
198
81
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
715
172
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
846
426
Ascend Extension for PyTorch
Python
275
311
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
694