首页
/ LMDeploy中Qwen2.5模型工具调用问题的解决方案

LMDeploy中Qwen2.5模型工具调用问题的解决方案

2025-06-03 00:23:27作者:苗圣禹Peter

在使用LMDeploy部署Qwen2.5-14B-Instruct模型进行工具调用时,开发者可能会遇到模型无法正确识别和调用工具的问题。本文将详细分析该问题的原因,并提供完整的解决方案。

问题现象

当开发者使用LMDeploy 0.7.2版本部署Qwen2.5-14B-Instruct模型,并尝试通过API进行工具调用时,模型会返回无法访问实时数据的响应,而不是预期的工具调用请求。具体表现为模型输出中包含"无法提供实时天气数据"等拒绝信息,而非生成工具调用请求。

原因分析

该问题主要由以下两个因素导致:

  1. 模型版本适配问题:Qwen2.5系列模型采用了与之前版本不同的对话模板格式,需要特别指定chat-template参数。

  2. 工具调用解析器配置:虽然使用了qwen解析器,但没有正确配合模型版本进行配置。

解决方案

正确的服务启动命令应包含以下关键参数:

lmdeploy serve api_server /path/to/Qwen2.5-14B-Instruct/ \
  --tp 2 \
  --model-name Qwen2.5-14B-Instruct \
  --server-port 12345 \
  --enable-prefix-caching \
  --chat-template qwen2d5 \
  --tool-call-parser qwen

其中两个关键参数的作用如下:

  1. --chat-template qwen2d5:指定使用适配Qwen2.5系列模型的对话模板格式,确保模型输入符合预期格式。

  2. --tool-call-parser qwen:使用Qwen系列模型的工具调用解析器,正确解析模型的工具调用输出。

验证方法

配置完成后,可以通过发送包含工具定义的API请求来验证功能是否正常。正确的响应应包含工具调用请求而非拒绝信息。

技术背景

Qwen2.5系列模型在工具调用机制上进行了优化,需要特定的对话模板来激活其工具调用能力。LMDeploy通过chat-template参数适配不同模型的特殊需求,而tool-call-parser则负责解析模型输出的工具调用格式。

总结

在使用LMDeploy部署较新的Qwen2.5系列模型时,务必注意同时配置chat-template和tool-call-parser参数,确保模型能够正确处理工具调用请求。这一解决方案不仅适用于天气查询场景,也适用于其他需要模型调用外部工具的应用场景。

登录后查看全文
热门项目推荐
相关项目推荐

最新内容推荐

项目优选

收起
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
139
1.91 K
kernelkernel
deepin linux kernel
C
22
6
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
192
273
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
923
551
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
421
392
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
74
64
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8