LMDeploy中Qwen2.5模型工具调用问题的解决方案
在使用LMDeploy部署Qwen2.5-14B-Instruct模型进行工具调用时,开发者可能会遇到模型无法正确识别和调用工具的问题。本文将详细分析该问题的原因,并提供完整的解决方案。
问题现象
当开发者使用LMDeploy 0.7.2版本部署Qwen2.5-14B-Instruct模型,并尝试通过API进行工具调用时,模型会返回无法访问实时数据的响应,而不是预期的工具调用请求。具体表现为模型输出中包含"无法提供实时天气数据"等拒绝信息,而非生成工具调用请求。
原因分析
该问题主要由以下两个因素导致:
-
模型版本适配问题:Qwen2.5系列模型采用了与之前版本不同的对话模板格式,需要特别指定chat-template参数。
-
工具调用解析器配置:虽然使用了qwen解析器,但没有正确配合模型版本进行配置。
解决方案
正确的服务启动命令应包含以下关键参数:
lmdeploy serve api_server /path/to/Qwen2.5-14B-Instruct/ \
--tp 2 \
--model-name Qwen2.5-14B-Instruct \
--server-port 12345 \
--enable-prefix-caching \
--chat-template qwen2d5 \
--tool-call-parser qwen
其中两个关键参数的作用如下:
-
--chat-template qwen2d5:指定使用适配Qwen2.5系列模型的对话模板格式,确保模型输入符合预期格式。 -
--tool-call-parser qwen:使用Qwen系列模型的工具调用解析器,正确解析模型的工具调用输出。
验证方法
配置完成后,可以通过发送包含工具定义的API请求来验证功能是否正常。正确的响应应包含工具调用请求而非拒绝信息。
技术背景
Qwen2.5系列模型在工具调用机制上进行了优化,需要特定的对话模板来激活其工具调用能力。LMDeploy通过chat-template参数适配不同模型的特殊需求,而tool-call-parser则负责解析模型输出的工具调用格式。
总结
在使用LMDeploy部署较新的Qwen2.5系列模型时,务必注意同时配置chat-template和tool-call-parser参数,确保模型能够正确处理工具调用请求。这一解决方案不仅适用于天气查询场景,也适用于其他需要模型调用外部工具的应用场景。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00