首页
/ 探索图无监督学习的前沿:GraIL

探索图无监督学习的前沿:GraIL

2024-06-08 08:34:19作者:裘旻烁

1、项目介绍

GraIL,即Graph Inductive Learning,是一个基于Python的开源框架,用于进行图无监督学习,特别是关系预测任务。这个项目源于ICML'20论文《通过子图推理进行归纳关系预测》(Inductive relation prediction by subgraph reasoning),它提出了一种新的算法,能够在未见过的节点上进行高效的关系推理。

2、项目技术分析

GraIL的核心是其创新的GraIL算法,该算法利用子图推理来对未知图中的关系进行归纳预测。其优势在于模型不仅能在训练数据集上的已知节点中工作,还能泛化到新节点,这在许多现实世界的应用中是非常重要的。项目还提供了与RuleN、NeuralLP和Drum等其他基线模型的比较,以验证GraIL的性能优势。

3、项目及技术应用场景

GraIL特别适用于那些需要处理动态或部分观测数据的问题,如知识图谱的扩展、社交网络分析以及推荐系统。例如,在知识图谱中,GraIL可以帮助预测两个未曾共同出现过的实体之间的关系,或者在新用户加入社交媒体平台时,预测他们可能的兴趣连接。

4、项目特点

  • 归纳能力:GraIL具备强大的归纳学习能力,能够从有限的训练数据中推断出未见过的节点间的关系。
  • 灵活性:支持多种模型的集成,包括规则学习算法(RuleN)和神经网络模型(NeuralLP, Drum),可进行有效的性能对比。
  • 易用性:提供简洁的命令行接口,方便实验设置和运行,所有依赖项都可通过pip安装。
  • 公平评估:为了确保比较的公正性,项目在测试阶段使用同一组负样本进行评价。

要启动你的GraIL探索之旅,只需按照readme文件的指示下载代码,安装依赖,并根据提供的示例数据集进行训练和测试即可。

如果你在关系预测或图学习领域工作,或对无监督学习有浓厚兴趣,GraIL将是一个值得尝试的强大工具。引用该项目在研究中,也别忘了提及原始论文:

@article{Teru2020InductiveRP,
  title={Inductive Relation Prediction by Subgraph Reasoning.},
  author={Komal K. Teru and Etienne Denis and William L. Hamilton},
  journal={arXiv: Learning},
  year={2020}
}

现在就行动起来,释放GraIL的力量,开启你的图无监督学习之旅吧!

登录后查看全文
热门项目推荐

项目优选

收起
kernelkernel
deepin linux kernel
C
22
6
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
138
188
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
7
0
ShopXO开源商城ShopXO开源商城
🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
94
15
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
187
266
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
893
529
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.08 K
0
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
371
387
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
337
1.11 K
HarmonyOS-ExamplesHarmonyOS-Examples
本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
401
377