Scipy-2017-sklearn项目中的监督学习回归分析教程
2025-07-10 10:43:29作者:裘晴惠Vivianne
回归分析概述
在机器学习中,回归分析是一种用于预测连续输出变量的监督学习技术。与分类问题不同,回归问题处理的是数值型输出而非类别标签。本教程将基于Scipy-2017-sklearn项目中的回归分析示例,详细介绍线性回归和K近邻回归两种基本方法。
准备数据
我们首先创建一个简单的数据集,基于正弦曲线添加一些噪声:
import numpy as np
import matplotlib.pyplot as plt
# 生成-3到3之间的100个等间距点
x = np.linspace(-3, 3, 100)
# 添加随机噪声的正弦曲线
rng = np.random.RandomState(42)
y = np.sin(4 * x) + x + rng.uniform(size=len(x))
# 可视化数据
plt.plot(x, y, 'o')
plt.show()
线性回归模型
数据预处理
在应用线性回归前,我们需要将数据转换为适合scikit-learn API的格式:
# 将1D数组转换为2D特征矩阵
X = x[:, np.newaxis]
# 划分训练集和测试集
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=42)
模型训练与评估
from sklearn.linear_model import LinearRegression
# 创建并训练模型
regressor = LinearRegression()
regressor.fit(X_train, y_train)
# 查看模型参数
print('权重系数:', regressor.coef_)
print('截距项:', regressor.intercept_)
线性回归模型的预测公式为:y = 权重 × x + 截距
可视化结果
# 计算拟合线的两个端点
min_pt = X.min() * regressor.coef_[0] + regressor.intercept_
max_pt = X.max() * regressor.coef_[0] + regressor.intercept_
# 绘制结果
plt.plot([X.min(), X.max()], [min_pt, max_pt], label='拟合线')
plt.plot(X_train, y_train, 'o', label='训练数据')
plt.legend()
plt.show()
模型评估
使用R²分数评估模型性能:
score = regressor.score(X_test, y_test)
print(f"测试集R²分数: {score:.2f}")
特征工程改进
为了提高模型性能,我们可以添加非线性特征:
# 添加sin(4x)作为新特征
X_new = np.hstack([X, np.sin(4 * X)])
# 重新训练模型
X_train_new, X_test_new, y_train, y_test = train_test_split(X_new, y, test_size=0.25, random_state=42)
regressor_new = LinearRegression().fit(X_train_new, y_train)
# 评估改进后的模型
new_score = regressor_new.score(X_test_new, y_test)
print(f"改进后测试集R²分数: {new_score:.2f}")
K近邻回归
当数据关系不是线性时,K近邻回归可能是更好的选择:
from sklearn.neighbors import KNeighborsRegressor
# 创建并训练KNN回归模型
knn_reg = KNeighborsRegressor(n_neighbors=1)
knn_reg.fit(X_train, y_train)
# 预测并可视化
y_pred_train = knn_reg.predict(X_train)
plt.plot(X_train, y_train, 'o', label="真实值")
plt.plot(X_train, y_pred_train, 's', label="预测值")
plt.legend()
plt.show()
# 评估模型
knn_score = knn_reg.score(X_test, y_test)
print(f"KNN回归测试集R²分数: {knn_score:.2f}")
模型比较与选择
- 线性回归:简单、解释性强,但可能欠拟合复杂模式
- K近邻回归:更灵活,能捕捉局部模式,但可能过拟合噪声
在实际应用中,建议:
- 先尝试简单模型(如线性回归)作为基准
- 根据数据特点考虑添加非线性特征
- 如果线性模型表现不佳,尝试KNN等非线性方法
- 使用交叉验证评估模型泛化性能
实战练习
尝试在波士顿房价数据集上比较这两种回归方法:
from sklearn.datasets import load_boston
# 加载数据
boston = load_boston()
X, y = boston.data, boston.target
# 数据预处理和模型比较代码...
通过本教程,您应该已经掌握了回归分析的基本概念和实现方法。在实际项目中,还需要考虑特征缩放、正则化、模型调参等进阶技术来进一步提升模型性能。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
414
3.18 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
Ascend Extension for PyTorch
Python
228
258
暂无简介
Dart
679
160
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
325
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
React Native鸿蒙化仓库
JavaScript
265
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
492