CMUA-Watermark 的安装和配置教程
1. 项目基础介绍和主要编程语言
CMUA-Watermark 是一个开源项目,旨在为对抗深度伪造技术提供一种跨模型的通用对抗性水印。它可以保护多种面部图像,抵御多种面部修改模型(如 StarGAN、AttGAN、AGGAN、HiSD)的攻击。该项目主要通过 Python 语言实现。
2. 项目使用的关键技术和框架
该项目使用了以下关键技术:
- 对抗性样本生成:利用生成对抗网络(GAN)生成对抗性水印。
- 水印融合策略:通过特定的融合策略将水印添加到面部图像中。
- 自动步长调整:使用 Microsoft NNI(Neural Network Intelligence)进行步长搜索和优化。
所使用的框架包括:
- TensorFlow:用于构建和训练深度学习模型。
- Keras:作为 TensorFlow 的高级接口,简化模型构建过程。
- NNI:用于超参数优化和自动化机器学习。
3. 项目安装和配置的准备工作与详细安装步骤
准备工作
在开始安装前,请确保您的系统满足以下要求:
- 操作系统:Linux 或 macOS
- Python 版本:3.6 或更高 -pip:用于安装 Python 包
安装步骤
-
克隆项目仓库
打开命令行窗口,运行以下命令克隆项目仓库:
git clone https://github.com/VDIGPKU/CMUA-Watermark.git cd CMUA-Watermark
-
安装依赖
在项目目录中,使用以下命令安装所需的 Python 包:
pip install -r requirements.txt
-
准备数据集
下载 CelebA 数据集,并创建指向数据集的符号链接:
cd stargan bash download.sh celeba cd .. ln -s your_path_to_celeba_data ./data
请将
your_path_to_celeba_data
替换为您的 CelebA 数据集路径。 -
准备模型权重
下载预训练的模型权重,并将权重文件移动到相应的模型文件夹中:
cd CMUA-Watermark mv ./weights/stargan/* ./stargan/stargan_celeba_256/models mv ./weights/AttentionGAN/* ./AttentionGAN/AttentionGAN_v1_multi/checkpoints/celeba_256_pretrained mv ./weights/HiSD/* ./HiSD mv ./weights/AttGAN/* ./AttGAN/output/256_shortcut1_inject0_none/checkpoint
注意:这些权重文件的版权属于其所有者。如果您需要进行商业用途,请联系权重文件的所有者以获取授权。
-
准备水印(仅用于推理)
下载提供的水印文件,以便测试其在 CelebA 数据集上的性能。
-
运行推理
使用以下命令对 CelebA 数据集中的图像进行推理(可在
evaluate.py
中修改测试图像数量):python3 universal_attack_inference.py
如果您想使用自己的图像进行推理,请运行以下命令,并确保
demo_input.png
被替换为您自己的图像路径:python3 universal_attack_inference_one_image.py ./demo_input.png
-
训练(攻击多种深度伪造模型)
-
搜索步长:使用 Microsoft NNI 进行步长搜索。您可以修改
nni_config.yaml
和search_space.json
文件来自定义搜索过程。nnictl create --config ./nni_config.yaml
-
使用步长进行训练:获取最佳步长后,修改
setting.json
文件中的默认步长,然后运行以下命令:python universal_attack.py
-
按照以上步骤操作,您应该能够成功安装和配置 CMUA-Watermark 项目,并开始使用它进行深度伪造的防御。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~087CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava05GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









