VLMEvalKit中LLaVABench评估指标的版本差异解析
2025-07-03 02:27:23作者:邓越浪Henry
在开源项目VLMEvalKit中,LLaVABench作为重要的多模态模型评估基准,其评分机制存在一些需要特别注意的技术细节。本文将从评估指标设计原理和版本差异两个方面进行深入分析。
评估指标的三重维度
VLMEvalKit中的LLaVABench评估结果包含三个关键指标:
- VLM Score:待测视觉语言模型的实际得分
- GPT4 Score:GPT-4作为参考模型生成的基准得分
- Relative Score:基于前两者的相对评分,计算公式为(VLM Score/GPT4 Score)*100
这种设计理念源于对模型性能评估的客观性需求。通过引入参考模型的基准得分,可以消除不同评估任务间的难度差异,使结果更具可比性。
与原始LLaVA项目的关键差异
值得注意的是,原始LLaVA项目仅报告了相当于VLMEvalKit中的Relative Score(相对评分),而VLMEvalKit则提供了更全面的评分维度。这种差异源于两个项目对"GPT4 Score"的不同定义:
- 在LLaVA项目中:GPT4 Score指代由GPT-4评估的模型得分
- 在VLMEvalKit中:GPT4 Score特指GPT-4作为参考模型生成的答案得分
GPT-4版本差异的影响
实践发现,使用不同版本的GPT-4会导致显著的评分差异。例如:
- 使用GPT-4-1106时,LLaVA-1.6-Mistral-7B模型的Relative Score约为66.6
- 切换至GPT-4-0613后,评分可提升至约80.0
这种差异主要源于:
- 模型能力的迭代改进
- 评分标准的潜在调整
- 输出稳定性的变化
最佳实践建议
为确保评估结果的可比性,建议:
- 明确记录使用的GPT-4具体版本
- 在对比不同模型时保持评估环境一致
- 同时关注绝对分数和相对分数
- 对关键结果进行多版本验证
理解这些技术细节对于正确解读评估结果至关重要,特别是在进行跨项目模型比较时,需要特别注意评估标准和基础模型版本的差异。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
222
238
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
671
156
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
312
React Native鸿蒙化仓库
JavaScript
261
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
859
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
217