Crawl4AI项目:从Markdown和Cleaned HTML中提取内容的实现方案
2025-05-03 11:06:26作者:牧宁李
在数据爬取和处理领域,Crawl4AI项目提供了一个强大的解决方案,特别是其LLMExtractionStrategy功能,能够利用大型语言模型从网页内容中提取结构化信息。本文将深入探讨如何从Markdown和Cleaned HTML格式中提取内容的技术实现。
当前实现方式
目前,Crawl4AI的LLMExtractionStrategy主要设计用于处理原始HTML内容。然而,开发者可以通过间接方式实现对Markdown内容的提取。核心思路是先获取爬取结果的Markdown格式,然后将其作为输入传递给提取策略。
# 示例代码:从Markdown提取内容
result = crawler.run(r"https://www.nbcnews.com/business", word_count_threshold=0)
from crawl4ai.extraction_strategy import LLMExtractionStrategy
llm_extraction_strategy = LLMExtractionStrategy(
provider="openai/gpt-4o-mini",
api_token=os.getenv('OPENAI_API_KEY'),
instruction="""Extract headers from this markdown content"""
)
extraction_result = llm_extraction_strategy.run("", [result.markdown])
print(extraction_result)
技术挑战与优化方向
-
Token效率优化:原始HTML通常包含大量冗余标签,会消耗宝贵的LLM tokens。使用Cleaned HTML可以显著减少token使用量,提高处理效率。
-
格式一致性:Markdown和Cleaned HTML相比原始HTML具有更一致的结构,有利于提高提取结果的准确性。
-
预处理流程:理想情况下,提取策略应该支持多种输入格式,包括原始HTML、Cleaned HTML和Markdown,以适应不同场景需求。
未来改进建议
-
直接格式支持:在LLMExtractionStrategy中增加对Markdown和Cleaned HTML的原生支持,简化开发流程。
-
智能格式选择:实现自动判断最佳输入格式的功能,根据内容特点和提取需求选择最合适的格式。
-
混合模式提取:结合多种格式的优势,例如使用Cleaned HTML保留重要结构信息,同时利用Markdown的简洁性。
实际应用场景
这种技术特别适用于:
- 新闻网站的内容摘要生成
- 电商平台的产品信息提取
- 知识库文档的结构化处理
- 研究论文的元数据抽取
通过优化输入格式的选择,开发者可以在保证提取质量的同时,显著降低LLM API的使用成本,这对于大规模数据处理项目尤为重要。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C063
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0131
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
455
3.39 K
Ascend Extension for PyTorch
Python
257
291
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
834
411
暂无简介
Dart
706
168
React Native鸿蒙化仓库
JavaScript
282
331
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
173
63
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.25 K
685
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19