DocETL项目中的系统提示配置最佳实践
DocETL作为一款强大的数据处理工具,其Python API和YAML配置方式为用户提供了灵活的管道构建能力。在实际使用过程中,系统提示(System Prompt)的配置方式经历了重要变更,本文将详细介绍最新配置方法及其应用场景。
系统提示配置的演变
早期版本的DocETL允许直接在Pipeline构造函数中通过system_prompt参数配置系统提示。但在最新版本中,这一方式已被弃用,改为通过optimizer_config参数进行配置。这一变更使得系统提示的配置更加规范化和集中化。
当前推荐配置方式
现在,系统提示应该作为优化器配置的一部分进行设置。在YAML配置文件中,正确的格式如下:
optimizer_config:
system_prompt:
dataset_description: 医生就诊记录的转录文本集合
persona: 分析患者症状和药物反应的医疗从业者
在Python API中,对应的配置方式为:
pipeline = Pipeline(
optimizer_config={
"system_prompt": {
"dataset_description": "医生就诊记录的转录文本集合",
"persona": "分析患者症状和药物反应的医疗从业者"
}
}
)
系统提示的核心要素
-
数据集描述(dataset_description):简明扼要地描述数据集的内容和特点,为LLM提供上下文信息。
-
角色设定(persona):定义LLM在执行操作时应采用的角色或视角,这对生成专业、符合场景的响应至关重要。
系统提示的最佳实践
-
保持简洁:系统提示应简明扼要,通常不超过两句话。
-
明确具体:描述应具体到足以指导LLM,但又足够通用以适用于管道中的所有操作。
-
一致性:确保系统提示与后续操作的目标和数据集特性保持一致。
-
测试验证:在实际应用前,应通过小规模测试验证系统提示的效果。
常见应用场景
-
医疗数据分析:如本文示例所示,设定为医疗从业者角色,用于分析患者记录。
-
法律文档处理:可设定为法律专家角色,用于解析合同或法律文书。
-
技术文档生成:设定为技术作者角色,用于生成API文档或使用说明。
迁移指南
对于现有项目,需要将直接传递的system_prompt参数迁移到optimizer_config结构中。这一变更不会影响功能,但能带来更好的配置管理和未来扩展性。
通过遵循这些最佳实践,用户可以更有效地利用DocETL的系统提示功能,提升数据处理和分析的质量与效率。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00