项目X中从img标签迁移到Next.js Image组件的优化实践
2025-06-30 10:06:18作者:冯梦姬Eddie
Badget
Badget aims to simplify financial management with a user-friendly interface and robust backend
在Next.js项目中,图片处理是一个需要特别注意的性能优化点。本文将以projectx-codehagen/Badget项目为例,探讨如何将传统的img标签迁移到Next.js提供的Image组件,从而提升页面加载性能。
为什么需要替换img标签
在Next.js项目中直接使用HTML标准的img标签会带来两个主要问题:
-
LCP(最大内容绘制)时间变长:img标签不会自动优化图片大小和格式,可能导致大尺寸图片拖慢页面渲染速度。
-
带宽浪费:未优化的图片会消耗更多网络流量,增加用户数据使用量。
Next.js Image组件的优势
Next.js提供的Image组件具有以下优化特性:
- 自动图片优化:根据设备尺寸和分辨率自动提供最佳尺寸的图片
- 延迟加载:只加载视口内的图片,减少初始加载时间
- 格式转换:自动转换为现代格式如WebP(如果浏览器支持)
- 尺寸调整:自动调整图片尺寸适应布局需求
迁移实践要点
在projectx-codehagen/Badget项目中,迁移工作主要集中在投资模块的持仓表格组件(holdings-table.tsx)中。以下是迁移时需要注意的技术要点:
-
导入Image组件:首先需要从next/image导入Image组件。
-
属性映射:
- src属性保持不变
- alt属性保持不变
- width和height必须显式设置
- className可以继续使用
-
布局处理:Image组件提供了几种布局模式:
- fixed:固定尺寸
- responsive:响应式缩放
- fill:填充容器
- intrinsic:默认,保持原始比例
-
占位符处理:可以配置blurDataURL属性实现渐进式加载效果。
性能影响评估
完成迁移后,项目可以获得以下性能提升:
-
LCP指标改善:通过自动提供合适尺寸的图片,减少主内容渲染时间。
-
带宽节省:现代图片格式和尺寸优化可显著减少图片传输量。
-
用户体验提升:渐进加载和延迟加载使页面感觉更流畅。
注意事项
-
使用Image组件可能会增加一些构建时间,因为需要处理图片优化。
-
在某些托管平台上,可能需要额外配置才能启用图片优化功能。
-
对于动态图片URL,需要配置next.config.js中的domains白名单。
通过这次迁移,projectx-codehagen/Badget项目在图片处理方面达到了Next.js的最佳实践标准,为后续的性能优化打下了良好基础。
Badget
Badget aims to simplify financial management with a user-friendly interface and robust backend
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++095AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
197
2.17 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
59
94

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
973
574

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
549
81

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133